Hello everybody!

as you know that if , \(a\geq b\) ,then it is not necessary that \(\phi(a)\geq\phi(b)\) . Since \(\phi\) not an increasing function.

But there are some cases in which above inequality holds true.

**Case 1**

When either of \(a\) and \(b\) , suppose lets take \(a\) as an arbitary prime , then \(b=a+1\) or \(b=a-1\). Same follows if \(b\) is prime.

**Case 2**

When \(a=b\)

**Case 3**

When \(a\) and \(b\) are both primes and , \(a>b\)

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewest\(Consider\quad f\left( n \right) =\phi (n)\quad \quad \quad Where\quad \phi (n)\quad is\quad Euler\quad Totient\quad Function\\ f\left( 5186 \right) =f\left( 5186+1 \right) =f\left( 5186+2 \right) =2592\quad \\ =>\quad f\left( 5186 \right) =f\left( 5187 \right) =f\left( 5188 \right) =2592\quad \\ 5186\quad is\quad the\quad only\quad number\quad which\quad satisfy\quad f\left( x \right) =f\left( x+1 \right) =f\left( x+2 \right) \\ and\quad is\quad less\quad than\quad { 10 }^{ 10 }.\)

Log in to reply