# Complex logarithms

So, another thought popped into my head today. This thought also involving complex numbers.

So we know what putting a complex number to another complex number is, but what about the opposite? What about complex logarithms?

$\large\log_{z_1}{z_2}$

So how do we go about solving this one?

Well first let's change the base to $e$, we'll keep the complex numbers as they are for now.

$\large \log_{z_1}{z_2} = \frac{\ln{z_2}}{\ln{z_1}}$

Now we'll convert the complex numbers into a different form.

$\large \frac{\ln{r_2e^{\theta_2 i}}}{\ln{r_1e^{\theta_1 i}}}$

Then using the rules of logarithms we'll simplify.

$\large \frac{\ln{r_2} + \ln{e^{\theta_2 i}}}{\ln{r_1} + \ln{e^{\theta_1 i}}}$

$\large \frac{\ln{r_2} + \theta_2 i}{\ln{r_1} + \theta_1 i}$

Now we need to multiply the top and bottom halves by $\boxed{\ln{r_1} - \theta_1 i}$ in order to make the bottom of the fraction a real number rather than a complex one.

$\large \frac{(\ln{r_2} + \theta_2 i)(\ln{r_1} - \theta_1 i)}{(\ln{r_1} + \theta_1 i)(\ln{r_1} - \theta_1 i)}$

$\large \frac{\ln{(r_2)}\ln{(r_1)} - \ln{(r_2)}\theta_1 i + \ln{(r_1) \theta_2 i + \theta_2\theta_1}}{(\ln{(r_1)})^2 + \theta_1^2}$

$\large \frac{(\ln{(r_2)\ln{(r_1)} + \theta_2\theta_1) + i(\ln{(r_1)}\theta_2 - \ln{(r_2)}\theta_1)}}{(\ln{(r_1)})^2 + \theta_1^2}$

And now the messy bit, substitution.

$\large \log_{z_1}{z_2} = \frac{\left(\ln{\sqrt{a_2^2 + b_2^2}}\ln{\sqrt{a_1^2 + b_1^2}} + \arctan{\frac{b_2}{a_2}}\arctan{\frac{b_1}{a_1}}\right) + i\left(\ln{\sqrt{a_1^2 + b_1^2}}\arctan{\frac{b_2}{a_2}} - \ln{\sqrt{a_2^2 + b_2^2}}\arctan{\frac{b_1}{a_1}}\right)}{\left(\ln{\sqrt{a_1^2 + b_1^2}}\right)^2 + \arctan{\left(\frac{b_1}{a_1}\right)}^2}$

So that's that, not as difficult as calculating this but still pretty tedious.

Hope you enjoyed the note.

Note by Jack Rawlin
5 years, 4 months ago

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

• Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
• Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
• Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold
- bulleted- list
• bulleted
• list
1. numbered2. list
1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$ ... $$ or $ ... $ to ensure proper formatting.
2 \times 3 $2 \times 3$
2^{34} $2^{34}$
a_{i-1} $a_{i-1}$
\frac{2}{3} $\frac{2}{3}$
\sqrt{2} $\sqrt{2}$
\sum_{i=1}^3 $\sum_{i=1}^3$
\sin \theta $\sin \theta$
\boxed{123} $\boxed{123}$

Sort by:

Wow! That's a gigantic formula. I'm not sure if it's applicable or not because I seldom (never) see such forms of $\log_{z_1} z_2$ before.

Why don't you put your working into one of these wikis here?

- 5 years, 4 months ago