Complex roots part 2 - Sum of the roots

\[\sum_{x = 0}^{n - 1}{Z_x} = 0\]

\[\large Z_x = \sqrt[n]{z} = \sqrt[2n]{a^2 + b^2}\text{ cis}\left(\frac{\arctan{\frac{b}{a}}}{n} + \frac{2x\pi}{n}\right)\]

Both of the above equations hold true as long as \(\boxed{n \neq 0}\). But why does the top one hold true?

That's what we're going to be answering. So let's begin.

\[\sum_{x = 0}^{n - 1}{Z_x} = Z_0 + Z_1 + \cdots + Z_{n - 1}\]

\[\sum_{x = 0}^{n - 1}{Z_x} = \sqrt[2n]{a^2 + b^2}\text{ cis}\left(\frac{\arctan{\frac{b}{a}}}{n}\right) + \sqrt[2n]{a^2 + b^2}\text{ cis}\left(\frac{\arctan{\frac{b}{a}}}{n} + \frac{2\pi}{n}\right) + \cdots + \sqrt[2n]{a^2 + b^2}\text{ cis}\left(\frac{\arctan{\frac{b}{a}}}{n} + \frac{2(n - 1)\pi}{n}\right)\]

\[\sum_{x = 0}^{n - 1}{Z_x} = \sqrt[2n]{a^2 + b^2}\left(\text{ cis}\left(\frac{\arctan{\frac{b}{a}}}{n}\right) + \text{ cis}\left(\frac{\arctan{\frac{b}{a}}}{n} + \frac{2\pi}{n}\right) + \cdots + \text{ cis}\left(\frac{\arctan{\frac{b}{a}}}{n} + \frac{(2n - 2)\pi}{n}\right)\right)\]


\[\text{cis}(a) + \text{cis}(b) + \text{cis}(c) + \cdots = \text{cis}(a)(1 + \text{cis}(b - a) + \text{cis}(c - a) + \cdots)\]


\[\sum_{x = 0}^{n - 1}{Z_x} = \sqrt[2n]{a^2 + b^2}\left(\text{ cis}\left(\frac{\arctan{\frac{b}{a}}}{n}\right)\left(1 + \text{cis}\left(\frac{2\pi}{n}\right) + \text{cis}\left(\frac{4\pi}{n}\right) + \cdots + \text{cis}\left(\frac{(2n - 2)\pi}{n}\right)\right)\right)\]


\[\text{cis}(nx) = (\text{cis}(x))^n\]


\[\sum_{x = 0}^{n - 1}{Z_x} = \sqrt[2n]{a^2 + b^2}\left(\text{ cis}\left(\frac{\arctan{\frac{b}{a}}}{n}\right)\left(1 + \text{cis}\left(\frac{2\pi}{n}\right) + \left(\text{cis}\left(\frac{2\pi}{n}\right)\right)^2 + \cdots + \left(\text{cis}\left(\frac{2\pi}{n}\right)\right)^{n - 1}\right)\right)\]


\[\text{Let } X = \text{cis}\left(\frac{2\pi}{n}\right)\]

\[\sum_{N = 0}^{n - 1}{X^N} = 1 + X + X^2 + \cdots + X^{n - 1}\]

\[\sum_{N = 0}^{n - 1}{X^N} = \frac{1 - X^{n}}{1 - X}\]


\[\sum_{x = 0}^{n - 1}{Z_x} = \sqrt[2n]{a^2 + b^2}\left(\text{ cis}\left(\frac{\arctan{\frac{b}{a}}}{n}\right)\frac{1 - X^{n}}{1 - X}\right)\]

\[\sum_{x = 0}^{n - 1}{Z_x} = \sqrt[2n]{a^2 + b^2}\left(\text{ cis}\left(\frac{\arctan{\frac{b}{a}}}{n}\right)\frac{1 - \left(\text{cis}\left(\frac{2\pi}{n}\right)\right)^{n}}{1 - \text{cis}\left(\frac{2\pi}{n}\right)}\right)\]

\[\sum_{x = 0}^{n - 1}{Z_x} = \sqrt[2n]{a^2 + b^2}\left(\text{ cis}\left(\frac{\arctan{\frac{b}{a}}}{n}\right)\frac{1 - \text{cis}(2\pi)}{1 - \text{cis}\left(\frac{2\pi}{n}\right)}\right)\]


\[\text{cis}(2\pi) = \cos(2\pi) + i\sin(2\pi) = 1 + 0i = 1\]


\[\sum_{x = 0}^{n - 1}{Z_x} = \sqrt[2n]{a^2 + b^2}\left(\text{ cis}\left(\frac{\arctan{\frac{b}{a}}}{n}\right)\frac{1 - 1}{1 - \text{cis}\left(\frac{2\pi}{n}\right)}\right)\]

\[\sum_{x = 0}^{n - 1}{Z_x} = \sqrt[2n]{a^2 + b^2}\left(\text{ cis}\left(\frac{\arctan{\frac{b}{a}}}{n}\right)\frac{0}{1 - \text{cis}\left(\frac{2\pi}{n}\right)}\right)\]

\[\sum_{x = 0}^{n - 1}{Z_x} = 0\]


Hope you enjoyed the note.

Note by Jack Rawlin
2 years, 7 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

There are no comments in this discussion.

×

Problem Loading...

Note Loading...

Set Loading...