This discussion board is a place to discuss our Daily Challenges and the math and science
related to those challenges. Explanations are more than just a solution — they should
explain the steps and thinking strategies that you used to obtain the solution. Comments
should further the discussion of math and science.

When posting on Brilliant:

Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .

Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.

Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.

Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

Markdown

Appears as

*italics* or _italics_

italics

**bold** or __bold__

bold

- bulleted - list

bulleted

list

1. numbered 2. list

numbered

list

Note: you must add a full line of space before and after lists for them to show up correctly

Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in`\(`

...`\)`

or`\[`

...`\]`

to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestDifferentiate both the sides individually. Doing that shall yield $\frac{a}{a^{2}+x^{2}}$ on both sides,

Thus, your conjecture is proved.

Log in to reply

Note that you still have to show that they are equal at one point, otherwise the graphs could be vertical shifts of each other.

Don't forget your constant $+ C$ when integrating!

Log in to reply

Yes sir I have taken care of the constant c while integrating the function in two ways and they are equal at one point.

Log in to reply

$The\quad exponential\quad form\quad of\quad Tan(z)\quad is\\ i\frac { { e }^{ -iz }-{ e }^{ iz } }{ { e }^{ -iz }+{ e }^{ iz } } \\ If\quad z=-\frac { i }{ 2 } Log(\frac { a+ix }{ a-ix } ),\quad then\quad Tan(z)\quad is\\ i({ (\frac { a+ix }{ a-ix } ) }^{ -\frac { 1 }{ 2 } }-{ (\frac { a+ix }{ a-ix } ) }^{ \frac { 1 }{ 2 } })({ (\frac { a+ix }{ a-ix } ) }^{ -\frac { 1 }{ 2 } }+{ (\frac { a+ix }{ a-ix } ) }^{ \frac { 1 }{ 2 } })^{ -1 }\\ Simplifying\quad this\quad reduces\quad it\quad to\quad \frac { x }{ a }$

Log in to reply

Thanks Michael for the solution I got these result by integrating the function $\frac{1}{x^2+a^2}$ by two different methods

Log in to reply

Vaidya already provided the other method, so I thought I'd include the exponential form route. You know, the brute force way.

Log in to reply

As I have mentioned below, it should be $\frac{a}{x^2+a^2}$ and not $\frac{1}{x^2+a^2}$

Log in to reply

Log in to reply

Beautiful method!!

Log in to reply

please do read my post at : https://brilliant.org/discussions/thread/math-is-getting-broken/ it is related to this question. thanks

Log in to reply

nice post

Log in to reply