Concurrency of Circles and Sides

Imgur

Imgur

While playing around on Geogebra, I found a curious theorem:

For all triangles \(\triangle ABC\), draw the circles with diameter as each of its sides. Call the circle passing through points \(A\) and \(B\) circle \(O_C\), and ditto for the other two circles. This theorem states that circles \(O_A\), \(O_B\), and line \(AB\) are concurrent, and ditto for the other two cases.

Your challenge: prove this theorem! Also, what is the significance of the concurrency points \(X,Y,Z\)? Is there a simpler way to define these points?

If this is actually a real theorem, please point me to the name of it.

Note by Daniel Liu
4 years, 3 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

Notice \(\angle AXC = 90\) due to \(AB\) being the diameter. Similarly \(\angle CXB = 90\), so \(\angle AXB = 180\) meaning \(X\) is on \(AB\). Similarly \(Y, Z\) are on \(CA, BC\).

The altitudes result in \(AX, BY, CZ\) being the altitudes of \(\triangle ABC\), concurring at the orthocenter and forming the orthic triangle of \(ABC\) (as a result, \(A, B, C\)are the excenters of \(\triangle XYZ\))

Akshaj Kadaveru - 4 years, 3 months ago

Log in to reply

Hint : Restate the theorem a bit, Let the circle \(O_A\) and the line-segment \(AC\) meet at point \(P\). Join point \(P\) to the midpoint of line-segment \(AB\) (call it \(D\)) . We need to prove that \(DP=AD=\frac{c}{2}\). The trigonometric formula \(b=a\cos C + c\cos A\) will be useful.

Abhishek Sinha - 4 years, 3 months ago

Log in to reply

There may be a more elegant solution.

Daniel Liu - 4 years, 3 months ago

Log in to reply

Indeed there is ! Note that the \(\angle APB\) is a right angle. Hence \(PD=\frac{1}{2}BC\).

Abhishek Sinha - 4 years, 3 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...