Concurrency, What? - Problem 7

In \(\triangle ABC\), let \(M\), \(N\), and \(O\) be the midpoints of \(BC\), \(CA\), and \(AB\), respectively. \(\triangle ABC\) is reflected over an arbitrary line \(\ell\), forming \(\triangle A'B'C'\). Show that

  • the lines parallel to \(B'C'\), \(C'A'\), and \(A'B'\) through \(M\), \(N\), and \(O\), respectively, are concurrent.
  • the lines perpendicular to \(B'C'\), \(C'A'\), and \(A'B'\) through \(M\), \(N\), and \(O\), respectively, are concurrent.

Conjecture (proof unnecessary, but interesting if presented) as to how this can be generalized.

Note by Cody Johnson
4 years, 2 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

Without affecting any angle, we can assume that the line \(l\) goes through the circumcenter of \(ABC\), hence \(A',B',C'\) lie on the circumcircle \(\Gamma\) of \(ABC\). We can further assume that \(\Gamma\) has a unit radius, then \(A=e^{i\theta_A},A'=e^{-i\theta_A}\) and so on. Now we can prove both concurrencies by invoking the trigonometric form of the Ceva theorem with respect to the triangle \(MNO\), having its sides parallel to the sides of \(ABC\). Hence the first concurrency follows from \[\prod_{cyc}\frac{\sin(\theta_A+2\theta_B+\theta_C)}{\sin(2\theta_A+\theta_B+\theta_C)}=1,\] while the second concurrency follows from \[\prod_{cyc}\frac{\cos(\theta_A+2\theta_B+\theta_C)}{\cos(2\theta_A+\theta_B+\theta_C)}=1.\]

Jack D'Aurizio - 4 years, 2 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...