# confusion on limits

we generally use $\mathop {\lim }\limits_{x \to 0} \left( {1 + x^2 } \right)^{\frac{1}{{x^2 }}} = e$ how ever if exponent of a number approaching to $1^ +$approaches to infinite then resultant should approach to infinite

Note by Shailendra Garg
5 years, 3 months ago

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold
- bulleted- list
• bulleted
• list
1. numbered2. list
1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$...$$ or $...$ to ensure proper formatting.
2 \times 3 $$2 \times 3$$
2^{34} $$2^{34}$$
a_{i-1} $$a_{i-1}$$
\frac{2}{3} $$\frac{2}{3}$$
\sqrt{2} $$\sqrt{2}$$
\sum_{i=1}^3 $$\sum_{i=1}^3$$
\sin \theta $$\sin \theta$$
\boxed{123} $$\boxed{123}$$

Sort by:

No that is not always true. A trivial example would be 0^x. In this case note that the base, i.e. (1+x^2) tends to 1 as x tends to 0. So the resultant expression doesn't approach infinity.

- 5 years, 3 months ago

but likewise $\mathop {\lim }\limits_{x \to 0} \left( {1 + x^2 } \right)^{\frac{1}{{x^4 }}} {\rm{ approaches}}{\kern 1pt} \;{\rm{to}}\;{\rm{infinite}}$

- 5 years, 3 months ago

As x becomes smaller and smaller the exponent approaches infinity while the base, i.e. 1+x^2 gets closer and closer to 1. So, the net result can't be guessed by us like that.

- 5 years, 3 months ago

By continuity of log, exp, and product, we have $\lim_{x\rightarrow 0} (1+x^2)^{1/x^4} = \lim_{x\rightarrow 0} ((1+x^2)^{1/x^2})^{\lim_{x\rightarrow 0}1/x^2} = e^{\lim_{x\rightarrow 0}1/x^2} = \infty$

- 5 years, 3 months ago

Can you elaborate further?

- 5 years, 3 months ago

(1+x^2) is greater than 1 and its exponent i.e 1/x^2 approaches to infinite , then this limit should approach to infinity, but it is 'e'. I know 'e' can be easily proved used logarithms or infinite series expansion. but the confusion again lies with my former statement

- 5 years, 3 months ago

You're making assumptions about growth that aren't correct.

- 5 years, 3 months ago