The Horizontal component of a conservative force and its relation to Potential Energy, \(U\), of the system is \(F_x = -\frac{\newcommand*\diff{\mathop{}\!\mathrm{d}} U}{\newcommand*\diff{\mathop{}\!\mathrm{d}} x}\). My physics book went further on to say that in 3 dimensions the equation becomes

\(\vec{F} = -\frac{\partial U}{\partial x}\hat{i} - \frac{\partial U}{\partial y}\hat{j} - \frac{\partial U}{\partial z}\hat{k}\)

Firstly why isn't it this instead

\(\vec{F} = -\frac{\newcommand*\diff{\mathop{}\!\mathrm{d}} U}{\newcommand*\diff{\mathop{}\!\mathrm{d}} x}\hat{i} - \frac{\newcommand*\diff{\mathop{}\!\mathrm{d}} U}{\newcommand*\diff{\mathop{}\!\mathrm{d}} y}\hat{j} - \frac{\newcommand*\diff{\mathop{}\!\mathrm{d}} U}{\newcommand*\diff{\mathop{}\!\mathrm{d}} z}\hat{k}\)

I'm quite new with partial derivates so a brief explanation of them would be helpful

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestNot sure about this, understand that the U here as 3 components, and so therefore it is impossible to use the d in the second equation because there are 3 dependent variables. As far as i know of, normal differentiation doesn't work when you have more than 1 dependent variable.

Log in to reply