Waste less time on Facebook — follow Brilliant.
×

Cool Geometry problem to prove

Suppose ABC is an arbitrary triangle with BC as its base. Extend BC in both ways such that XBCY straight line is created. Now bisect the two external angles ABX and ACY. From the vertex A drop two perpendicular lines on these bisectors - assume AP and AQ. Prove that PQ is parallel to BC.

Note by Raja Metronetizen
3 years, 6 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

Simply extend \(AP\) and \(AQ\) (they meet the line \(BC\) at \(P'\) and \(Q'\) respectively) and by \(ASA\) you get equal triangles, hence \(AP=PP', AQ=QQ'\), then \(PQ\) is just the mid-segment of \(\triangle AP'Q'\), which means \(PQ || BC. \square\)

Mathh Mathh - 3 years, 6 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...