Some theorem states that there is no function with uncountably many strict extremal points.

For each \(\delta>0\), the set of all \(x\in\mathbb{R}\) such that \(f(y)<f(x)\) for all \(y\) with \(0<|x-y|<\delta\) is countable. This can be seen by noting that the set contains at most one element of the interval \([k\frac{\delta}{2},(k+1)\frac{\delta}{2}]\) for each integer \(k\), and these intervals cover \(\mathbb{R}\). The set of strict local maxima is a countable union of such sets, for example taking \(\delta=\frac{1}{n}\) as \(n\) ranges over the positive integers.

I wonder if the peaks of the Weierstass Function could be shown to have a bijection with \(\mathbb{N}\)

Thoughts?

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

There are no comments in this discussion.