Waste less time on Facebook — follow Brilliant.
×

Counter Examples

The easiest way to disprove a conjecture is to find a counter example to the statement. If you suspect that a statement is not necessarily true, find a counter example.

Which of the following statements about triangles are true?

I. The perimeter of a triangle with integer sides is an integer.
II. The area of a triangle with integer sides is an integer.
III. 2 triangles with the same perimeter are similar.

A) I only
B) II only
C) III only
D) I and II only
E) I, II, and III

Solution: Consider the first statement. The perimeter of a triangle is the sum of its 3 sides. Since each of the sides is an integer, hence the perimeter is an integer.

Consider the second statement. This statement looks suspiciously false, but it can be hard to find a counter example. The favorite \( 3-4-5\) or \( 5-12-13\) right triangles have integer area. We know that the area is equal to half base times height. The base is an integer, so if we can make the height a non-integer, then it's possible to find a counterexample. For what triangles is it easy to find their height? Let's consider an isosceles triangle! The \( 1-2-2\) isosceles triangle has a height of \( \sqrt{2^2 - .5^2 } = \frac{1}{2} \sqrt{17} \). Clearly, this triangle does not have integer area!

Consider the third statement. The triangles \( 3-4-5\) and \(4-4-4\) are clearly not similar. Hence it is not true.

Thus, only the first statement is true. The answer is A.

Note by Arron Kau
3 years, 4 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

There are no comments in this discussion.

×

Problem Loading...

Note Loading...

Set Loading...