Solve for positive integers x, y & z :

\(x + y - z = 4\)

\(x^2 - y^2 + z^2 = 4\)

\(xyz = 6 \)

Solve for positive integers x, y & z :

\(x + y - z = 4\)

\(x^2 - y^2 + z^2 = 4\)

\(xyz = 6 \)

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

## Comments

Sort by:

TopNewestUsual Method:There're no integral solutions. As \((x,y,z)\) will only be the 9 permutations of \((1,1,6)\) and \((1,2,3)\). None of them satisfy.

Brute Force Method:I also did some nonsense calculations to find the values:

\(x+y = 4+z, xy=\dfrac{6}{z}\)

Thus I obtained \(x-y = \sqrt{\dfrac{z^3+8z^2+16z-24}{z}}\)

\((x+y)(x-y) = 4 - z^2 \Rightarrow (x+y)^2(x-y)^2 = (4 - z^2)^2 \)

\(\Rightarrow (4+z)^2 \left(\dfrac{z^3+8z^2+16z-24}{z} \right)= (4 - z^2)^2\)

And then visit this.

No integral solutions obtained by Brute Force as well.

Log in to reply

Thanks sir.

But how do you find x - y

Log in to reply

\((x-y)^2 = (x+y)^2 - 4xy\)

Log in to reply

@Dev Sharma : Is this any of NMTC's problems? Nowadays, NMTC is trending among the young students of India!

Log in to reply

Log in to reply

National Mathematics Talent Contests

Log in to reply

Log in to reply

Log in to reply

I made it to a bi quadratic in z but no integral sol.

Log in to reply

@Nihar Mahajan @Swapnil Das @Calvin Lin @Niranjan Khanderia @Satyajit Mohanty

Log in to reply