# Cubed Harmonic Sum

Prove That

$\sum_{n=1}^{\infty} \left(\frac{H_n}{n}\right)^3=\dfrac{31}{5040}\pi^6-\dfrac{5}{2}(\zeta(3))^2$

Notations:

This is a part of the set Formidable Series and Integrals. Note by Ishan Singh
3 years, 11 months ago

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

• Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
• Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
• Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold
- bulleted- list
• bulleted
• list
1. numbered2. list
1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$ ... $$ or $ ... $ to ensure proper formatting.
2 \times 3 $2 \times 3$
2^{34} $2^{34}$
a_{i-1} $a_{i-1}$
\frac{2}{3} $\frac{2}{3}$
\sqrt{2} $\sqrt{2}$
\sum_{i=1}^3 $\sum_{i=1}^3$
\sin \theta $\sin \theta$
\boxed{123} $\boxed{123}$

Sort by:

First I'll evaluate: $\displaystyle S={ \left( \sum _{ m=1 }^{ n }{ \frac { 1 }{ m } } \right) }^{ 3 }$

Now, we can re-write it as: $S=\left( \sum _{ { m }_{ 1 }=1 }^{ n }{ \frac { 1 }{ { m }_{ 1 } } } \right) \left( \sum _{ { m }_{ 2 }=1 }^{ n }{ \frac { 1 }{ { m }_{ 2 } } } \right) \left( \sum _{ { m }_{ 3 }=1 }^{ n }{ \frac { 1 }{ { m }_{ 3 } } } \right)$

This satisfies quasi-shuffle identity. So I can re-write it as: $S=\left( \sum _{ n\ge { m }_{ 1 }>{ m }_{ 2 }>{ m }_{ 3 }>1 }^{ }{ + } \sum _{ n\ge { m }_{ 1 }>{ m }_{ 3 }>{ m }_{ 2 }>1 }^{ }{ + } \sum _{ n\ge { m }_{ 2 }>{ m }_{ 3 }>{ m }_{ 1 }>1 }^{ }{ + } \sum _{ n\ge { m }_{ 2 }>{ m }_{ 1 }>{ m }_{ 3 }>1 }^{ }{ + } \sum _{ n\ge { m }_{ 3 }>{ m }_{ 2 }>{ m }_{ 1 }>1 }^{ }{ + } \sum _{ n\ge { m }_{ 3 }>{ m }_{ 1 }>{ m }_{ 2 }>1 }^{ }{ + } \sum _{ n\ge { m }_{ 1 }>{ m }_{ 3 }={ m }_{ 2 }>1 }^{ }{ + } \sum _{ n\ge { m }_{ 2 }>{ m }_{ 3 }={ m }_{ 1 }>1 }^{ }{ + } \sum _{ n\ge { m }_{ 3 }>{ m }_{ 1 }={ m }_{ 2 }>1 }^{ }{ + } \sum _{ n\ge { m }_{ 1 }={ m }_{ 3 }>{ m }_{ 2 }>1 }^{ }{ + } \sum _{ n\ge { m }_{ 2 }={ m }_{ 3 }>{ m }_{ 2 }>1 }^{ }{ + } \sum _{ n\ge { m }_{ 1 }={ m }_{ 2 }>{ m }_{ 3 }>1 }^{ }{ + } \sum _{ n\ge { m }_{ 1 }={ m }_{ 2 }={ m }_{ 3 }>1 }^{ }{ } \right) \frac { 1 }{ { m }_{ 1 }{ m }_{ 2 }{ m }_{ 3 } }$

Now, using multi-harmonic sum I'll re-write it as: $S={ 6H }_{ n }\left( 1,1,1 \right) +{ 3H }_{ n }\left( 2,1 \right) +{ 3H }_{ n }\left( 1,2 \right) +{ H }_{ n }\left( 3 \right)$

Now, coming back to the problem. I'll insert the value of S here. $A=\sum _{ n=1 }^{ \infty }{ \frac { { 6H }_{ n }\left( 1,1,1 \right) +{ 3H }_{ n }\left( 2,1 \right) +{ 3H }_{ n }\left( 1,2 \right) +{ H }_{ n }\left( 3 \right) }{ { n }^{ 3 } } }$

Now, I'll use the relation of multi-harmonic sum and multi-zeta variable: $\sum_{n=1}^\infty \frac{H_n(s_1,\ldots,s_k)}{n^s}=\zeta(s,s_1,\ldots,s_k)+\zeta(s+s_1,s_2,\ldots,s_k).$

Therefore, $A=6\zeta \left( 3,1,1,1 \right) +6\zeta \left( 4,1,1 \right) +3\zeta \left( 3,2,1 \right) +3\zeta \left( 5,1 \right) +3\zeta \left( 3,1,1 \right) +3\zeta \left( 4,1 \right) +\zeta \left( 3,3 \right) +\zeta \left( 6 \right)$

Now, on inserting values of each zeta (took me days to get each one of them and each took pages to solve and hence I'm not posting the method), we get: $\boxedA=\sum _{ n=1 }^{ \infty }{ { \left( \frac { { H }_{ n } }{ n } \right) }^{ 3 } } =\frac { 31 }{ 5040 } { \pi }^{ 6 }-\frac { 5 }{ 2 } { \left( \zeta \left( 3 \right) \right) }^{ 2 }$

- 3 years, 10 months ago

Evaluate $\zeta(3,2,1)$ with a proper solution. ?????? Thanks

- 3 years, 10 months ago

I found it in a website which I don't remember. It was a kind of blog website.

- 3 years, 10 months ago

which leads to an incomplete solution . try to find that blog

- 3 years, 10 months ago

Nice solution!

- 3 years, 10 months ago

Thanks to you. Because of this I could learn many new concepts.

- 3 years, 10 months ago

Quasi - Shuffling can also be used to solve this question

- 3 years, 10 months ago

I'll try that tonight!

- 3 years, 10 months ago

Yes, could you please give a hint? I'm stumped, this is as far as I could get:

$\sum_{n=1}^{\infty} \left(\frac{H_n}{n}\right)^3 = \sum_{n=1}^{\infty} \left(\sum_{k=1}^{\infty} \frac{1}{k(k+n)}\right)^3$$= \sum_{n=1}^{\infty} \sum_{m=1}^{\infty} \sum_{k=1}^{\infty} \sum_{j=1}^{\infty} \frac{1}{jkm(j+n)(k+n)(m+n)}$

- 3 years, 10 months ago

Use $\displaystyle H_{n} = \int_{0}^{1} \dfrac{1-x^n}{1-x} \mathrm{d}x$ and interchange sum and integral. Then try using Integration By Parts.

- 3 years, 10 months ago

Are you sure about interchanging the integral and summation sigh? I don't think that will be possible as you are taking the integral inside the cube.

- 3 years, 10 months ago

$H_{n} ^3 = \displaystyle \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \dfrac{(1-x^n)(1-y^n)(1-z^n)}{(1-x)(1-y)(1-z)} \mathrm{d}x \ \mathrm{d}y \ \mathrm{d}z$

- 3 years, 10 months ago

Nice, I'll try this one also.

- 3 years, 10 months ago