Decimal parts of multiples

For a real number \(x\), let \(f(x)\) be a function such that \(f(x) = x - \lfloor x \rfloor\); and let \(A(x)\) be a set such that \(A(x) = \{f(xn) : n \in \mathbb{N} \}\).

Prove the following:

(1) \(x\) is rational if and only if \(A(x)\) is finite;

(2) \(x\) is irrational if and only if \(A(x)\) is dense in the interval \([0,1)\).

Have fun :)

Note by Ariel Gershon
3 years ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

Suppose \( A(x) \) is finite. Then by the Pigeonhole Principle, there are two distinct integers \( m \) and \( n \) such that \( f(xm) = f(xn) \). So \( xm-xn = k \) is an integer. Then \( x = \frac{k}{m-n} \) is rational.

Suppose \( A(x) \) is dense in \( [0,1) \). Then it is certainly infinite. So \( x \) can't be rational, by (1).

What remains is to show that if \( x \) is irrational, then \( A(x) \) is dense in \( [0,1) \).

Patrick Corn - 3 years ago

Log in to reply

You can do this by the Pigeonhole Principle as well:

http://math.stackexchange.com/questions/272545/multiples-of-an-irrational-number-forming-a-dense-subset

Patrick Corn - 3 years ago

Log in to reply

We see that \(f(x) = \{x\}\), i.e. it is the fractional part of \(x\).

(1) \(\longrightarrow\) In this direction we assume that \(x\) is rational and try to prove \(A(x)\) is finite. Since \(x\) is rational, we can write it as \(x = \frac{p}{q}\) where \(p\) and \(q\) are coprime integers and \(q\) is not zero.

Claim: \(A(x)\) will have exactly \(q\) elements.

The elements in \(A(x)\) will be \(\big \{\frac{p}{q} \big \}, \big \{\frac{2p}{q} \big \}, \big \{\frac{3p}{q} \big \}, \big \{\frac{4p}{q} \big \}, \ldots \).

Since \(p\) and \(q\) are integers, these terms can be written as \(\frac{p ~\bmod~ q}{q}, \frac{2p ~\bmod ~ q}{q}, \frac{3p ~\bmod ~ q}{q}, \frac{4p ~\bmod~ q}{q}, \ldots \). There can be only \(q\) such terms, viz \(\frac{0}{q}, \frac{1}{q}, \frac{2}{q}, \ldots \frac{q-1}{q}\). Since \(q\) is a finite number, \(A(x)\) also has a finite number of elements.

Pranshu Gaba - 3 years ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...