Waste less time on Facebook — follow Brilliant.
×

Dedicated to my best friend.

Dedicated to my best friend Sanjeet Raria :

Prove that \(e\) is irrational number.


Go through more proofs via Proofs - Rigorous Mathematics and enhance your mathematical growth!

Note by Sandeep Bhardwaj
2 years, 9 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

We start with the series expansion of \(e\)

\(e=1+\dfrac { 1 }{ 2! } +\dfrac { 1 }{ 3! } +...\)

which, for any \(n\), we can restate as

\(e=\left( 1+\dfrac { 1 }{ 2! } +\dfrac { 1 }{ 3! } +...+\dfrac { 1 }{ n! } \right) +\left( \dfrac { 1 }{ (n+1)! } +\dfrac { 1 }{ (n+2)! } +... \right) \)

\(e=\left( 1+\dfrac { 1 }{ 2! } +\dfrac { 1 }{ 3! } +...+\dfrac { 1 }{ n! } \right) +\dfrac { 1 }{ n! } \left( \dfrac { 1 }{ (n+1) } +\dfrac { 1 }{ (n+1)(n+2) } +... \right) \)

But, because we know that

\(\dfrac { 1 }{ (n+1) } +\dfrac { 1 }{ (n+1)(n+1) } +\dfrac { 1 }{ (n+1)(n+1)(n+1) } +...=\dfrac { 1 }{ n } \)

we can write

\(0<e-\left( 1+\dfrac { 1 }{ 2! } +\dfrac { 1 }{ 3! } +...+\dfrac { 1 }{ n! } \right) \le \dfrac { 1 }{ n! } \dfrac { 1 }{ n } \)

or, combining the fractions and multiplying all sides by \(n!\)

\(0<en!-N\le \dfrac { 1 }{ n } \)

where N is an integer. If \(e\) can be expressed as a fraction \(a/b\) where \(a\) and \(b\) are integers, then we can choose \(n\) large enough so that \(en!\) is an integer, which means that \(en!-N\) is an integer. But it’s impossible for there to be an integer between \(0\) and \( \dfrac { 1 }{ n }. \) Hence, \(e\) must be irrational.

Michael Mendrin - 2 years, 9 months ago

Log in to reply

When I read the last line of the proof, I was a bit puzzled as to why it worked. Sure you followed these steps through, but shouldn't work for just about anything?

Then I realised that \(e \equiv \sum n!^{-1}\)! As Hardy once said, "A chess player may offer the sacrifice of a pawn or even a piece, but a mathematician offers the game." Great example.

Like Sandeep Bhardwaj said, a million salutes.

Jake Lai - 2 years, 9 months ago

Log in to reply

That was a really astute point you brought up, as to "why should this work for this particular instance?" Thanks, it's worth deeper analysis. So maybe it wasn't just hand-waving, after all.

Michael Mendrin - 2 years, 9 months ago

Log in to reply

Absolute ! Millions of salutes to you sir.

Sandeep Bhardwaj - 2 years, 9 months ago

Log in to reply

I have no idea to prove it . But Just For a Joke : Type 'e' in any Advanced calculator .
Hence Proved . Lol ! :)

Karan Shekhawat - 2 years, 9 months ago

Log in to reply

Thanks @Po.

Sanjeet Raria - 2 years, 9 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...