By Differentiation - Quotient Rule , the integrand might be in the form of \( \dfrac {v u' - u v'}{v^2} \), so we can make the assumption that \(v = x\sin(x) + \cos(x) \).

Now we just want to find the unknown coefficients for \(u = A x\cos(x) + Bx \sin(x) + C \sin(x)+ D \cos(x) + Ex \) such that \(vu' - uv' = x^2 \). Solving this gives \(u = \sin(x) - x\cos(x) \).

Checking back, the indefinite integral of \( \dfrac{x^2}{x\sin(x) + \cos(x)} \) is indeed \( \dfrac{\sin(x) - x\cos(x)}{x\sin(x) + \cos(x)} \). Substituting the limits give the desired answer.

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestBy Differentiation - Quotient Rule , the integrand might be in the form of \( \dfrac {v u' - u v'}{v^2} \), so we can make the assumption that \(v = x\sin(x) + \cos(x) \).

Now we just want to find the unknown coefficients for \(u = A x\cos(x) + Bx \sin(x) + C \sin(x)+ D \cos(x) + Ex \) such that \(vu' - uv' = x^2 \). Solving this gives \(u = \sin(x) - x\cos(x) \).

Checking back, the indefinite integral of \( \dfrac{x^2}{x\sin(x) + \cos(x)} \) is indeed \( \dfrac{\sin(x) - x\cos(x)}{x\sin(x) + \cos(x)} \). Substituting the limits give the desired answer.

Log in to reply

Challenge student note: nice solution. U have used the trick perfectly.

Log in to reply

Yes,thank you!Actually this problem is from a book,the book too had a similar solution,I just wanted a different one,an easier one!

Log in to reply

Please don't use square brackets if it is not a gif. It confuses.

Log in to reply

Log in to reply

I will post this one later. Got it.

Log in to reply