Derivation of the Elastic Collision Formula

In the scenario of an one-dimensional elastic collision between two objects, 11 and 22, their final velocities, v1v_1 and v2v_2 can be found with the following formula knowing their individual masses, m1m_1 and m2m_2, and their initial velocities, u1u_1 and u2u_2.


Derivation:

In an elastic collision, momentum is conserved:

pf=pim1v1+m2v2=m1u1+m2u2m1v1m1u1=m2u2m2v2m1(v1u1)=m2(u2v2)\begin{aligned} \sum p_f&=\sum p_i\\ m_1v_1+m_2v_2&=m_1u_1+m_2u_2\\ m_1v_1-m_1u_1&=m_2u_2-m_2v_2\\ \textcolor{#3D99F6}{m_1(v_1-u_1)}&=\textcolor{#3D99F6}{m_2(u_2-v_2)} \end{aligned}

In an elastic collision, kinetic energy is conserved:

Kf=Ki12m1v12+12m2v22=12m1u12+12m2u22m1v12+m2v22=m1u12+m2u22m1v12m1u12=m2u22m2v22m1(v12u12)=m2(u22v22)m1(v1u1)(v1+u1)=m2(u2v2)(u2+v2)m2(u2v2)(v1+u1)=m2(u2v2)(u2+v2)v1+u1=v2+u2v2=u1+v1u2\begin{aligned} \sum K_f&=\sum K_i\\ \frac12m_1v_1^2+\frac12m_2v_2^2&=\frac12m_1u_1^2+\frac12m_2u_2^2\\ m_1v_1^2+m_2v_2^2&=m_1u_1^2+m_2u_2^2\\ m_1v_1^2-m_1u_1^2&=m_2u_2^2-m_2v_2^2\\ m_1(v_1^2-u_1^2)&=m_2(u_2^2-v_2^2)\\ \textcolor{#3D99F6}{m_1(v_1-u_1)}(v_1+u_1)&=m_2(u_2-v_2)(u_2+v_2)\\ \textcolor{#3D99F6}{m_2(u_2-v_2)}(v_1+u_1)&=m_2(u_2-v_2)(u_2+v_2)\\ v_1+u_1&=v_2+u_2\\ \textcolor{#20A900}{v_2}&=\textcolor{#20A900}{u_1+v_1-u_2} \end{aligned}


pf=pim1v1+m2v2=m1u1+m2u2m1v1+m2(u1+v1u2)=m1u1+m2u2m1v1+m2u1+m2v1m2u2=m1u1+m2u2m1v1+m2v1=m1u1+2m2u2m2u1(m1+m2)v1=(m1m2)u1+2m2u2v1=(m1m2m1+m2)u1+(2m2m1+m2)u2\begin{aligned} \sum p_f&=\sum p_i\\ m_1v_1+m_2\textcolor{#20A900}{v_2}&=m_1u_1+m_2u_2\\ m_1v_1+m_2(\textcolor{#20A900}{u_1+v_1-u_2})&=m_1u_1+m_2u_2\\ m_1v_1+m_2u_1+m_2v_1-m_2u_2&=m_1u_1+m_2u_2\\ m_1v_1+m_2v_1&=m_1u_1+2m_2u_2-m_2u_1\\ (m_1+m_2)v_1&=(m_1-m_2)u_1+2m_2u_2\\ \textcolor{#D61F06}{v_1}&=\textcolor{#D61F06}{\left(\frac{m_1-m_2}{m_1+m_2}\right)u_1+\left(\frac{2m_2}{m_1+m_2}\right)u_2} \end{aligned}

v2=u1+v1u2v2=u1+(m1m2m1+m2)u1+(2m2m1+m2)u2u2v2=(1+m1m2m1+m2)u1+(2m2m1+m21)u2v2=(m1+m2m1+m2+m1m2m1+m2)u1+(2m2m1+m2m1+m2m1+m2)u2v2=(2m1m1+m2)u1+(m2m1m1+m2)u2\begin{aligned} v_2&=u_1+\textcolor{#D61F06}{v_1}-u_2\\ v_2&=u_1+\textcolor{#D61F06}{\left(\frac{m_1-m_2}{m_1+m_2}\right)u_1+\left(\frac{2m_2}{m_1+m_2}\right)u_2}-u_2\\ v_2&=\left(1+\frac{m_1-m_2}{m_1+m_2}\right)u_1+\left(\frac{2m_2}{m_1+m_2}-1\right)u_2\\ v_2&=\left(\frac{m_1+m_2}{m_1+m_2}+\frac{m_1-m_2}{m_1+m_2}\right)u_1+\left(\frac{2m_2}{m_1+m_2}-\frac{m_1+m_2}{m_1+m_2}\right)u_2\\ v_2&=\left(\frac{2m_1}{m_1+m_2}\right)u_1+\left(\frac{m_2-m_1}{m_1+m_2}\right)u_2 \end{aligned}


v1=(m1m2m1+m2)u1+(2m2m1+m2)u2v2=(2m1m1+m2)u1+(m2m1m1+m2)u2\therefore \boxed{ \begin{aligned} v_1&=\left(\frac{m_1-m_2}{m_1+m_2}\right)u_1+\left(\frac{2m_2}{m_1+m_2}\right)u_2\\ v_2&=\left(\frac{2m_1}{m_1+m_2}\right)u_1+\left(\frac{m_2-m_1}{m_1+m_2}\right)u_2 \end{aligned} }

or, equivalently:

[v1v2]=1m1+m2[m1m22m22m1m2m1][u1u2]\boxed{ \def\arraystretch{1.5} \begin{bmatrix} v_1\\v_2 \end{bmatrix}= \frac1{m_1+m_2}\begin{bmatrix} m_1-m_2&2m_2\\ 2m_1&m_2-m_1 \end{bmatrix} \begin{bmatrix} u_1\\u_2 \end{bmatrix} }

Note by Gandoff Tan
9 months ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

There are no comments in this discussion.

×

Problem Loading...

Note Loading...

Set Loading...