\[ \left [\displaystyle\int _{ a }^{ b }{ f(x)g(x)\quad dx } \right ]^{ 2 }=\displaystyle\int _{ a }^{ b }{ { f }^{ 2 }(x)dx\displaystyle\int _{ a }^{ b }{ { g }^{ 2 }(x)\quad dx-\frac { 1 }{ 2 } \displaystyle\int _{ a }^{ b }{ \displaystyle\int _{ a }^{ b }{ [f(x)g(y)-f(y)g(x)] } ^{ 2 }dxdy } } } \]

Derive the Schwarz inequality using the identity above.

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewest@Ishan Singh can you post a derivation?

Log in to reply

There's nothing left to derive. Just see that square of the integral on the R.H.S. is \(\geq 0\) and we are done.

Log in to reply