Deriving the Bell Curve

This note has been used to help create the Normal Distribution wiki

Begin with a row from the Pascal triangle, preferably some large exponent , derive the Gaussian Distribution.


The bell curve is a probability density curve of binary systems. Then the probability at a some displacement from the medium is P(n,k)=(nk)2n=n!(12n+k)!(12nk)!2nP(n, k) = \left( \begin{matrix} n \\ k \end{matrix} \right) {2}^{-n}= \frac{n!}{(\frac{1}{2}n + k)! (\frac{1}{2}n - k)! {2}^{n}}

Using the Stirling approximation and treating k=σ2k = \frac{\sigma}{2}, we have
P(n,σ)(n2π)12(n2)n(n2σ24)12(n+1)(n+σnσ)σ2.P(n, \sigma) \sim {\left(\frac{n}{2\pi} \right)}^{\frac{1}{2}} {\left(\frac{n}{2}\right)}^{n} {\left(\frac{{n}^{2} - {\sigma}^{2}}{4}\right)}^{-\frac{1}{2}(n+1)}{\left(\frac{n + \sigma}{n-\sigma}\right)}^{\frac{-\sigma}{2}}.

For n>>σn>>\sigma , n+σnσ1+2σn\frac{n + \sigma}{n-\sigma} \sim 1+\frac{2\sigma}{n}; hence, for large nn P(n,σ)(n2π)12(1σ2n2)12(n+1)(1+2σn)σ2.P(n, \sigma) \sim {\left(\frac{n}{2\pi} \right)}^{\frac{1}{2}} {\left(1- \frac{{\sigma}^{2}}{{n}^{2}}\right)}^{-\frac{1}{2}(n+1)}{\left(1+\frac{2\sigma}{n}\right)}^{\frac{-\sigma}{2}}.

Taking the logarithm yields ln(P(n,σ))12ln(2πn)12(n+1)ln(1σ2n2)σ2ln(1+2σn).ln(P(n,\sigma)) \sim \frac{1}{2}ln \left (\frac{2}{\pi n}\right) - \frac{1}{2}(n+1)ln \left (1- \frac{{\sigma}^{2}}{{n}^{2}}\right) - \frac{\sigma}{2}ln \left (1+\frac{2\sigma}{n}\right).

For small xx, ln(1+x)xln(1+x) \approx x; subsequently, ln(P(n,σ))12ln(2πn)12(n+1)(σ2n2)σ2(2σn)ln(P(n,\sigma)) \sim \frac{1}{2}ln \left (\frac{2}{\pi n}\right) - \frac{1}{2}(n+1) \left (-\frac{{\sigma}^{2}}{{n}^{2}}\right) - \frac{\sigma}{2} \left (\frac{2\sigma}{n}\right) or ln(P(n,σ))12ln(2πn)+σ2n2σ22n.ln(P(n,\sigma)) \sim \frac{1}{2}ln \left (\frac{2}{\pi n}\right) + \frac{{\sigma}^{2}}{{n}^{2}} - \frac{{\sigma}^{2}}{2n}.

Since σ2n2\frac{{\sigma}^{2}}{{n}^{2}} vanishes faster than σ22n\frac{{\sigma}^{2}}{2n} for very large nn, we arrive at the result:

P(n,σ)=(2πn)12eσ22n.P(n, \sigma) = {\left(\frac{2}{\pi n} \right)}^{\frac{1}{2}} {e}^{\frac{-{\sigma}^{2}}{2n}}.

Check out my other notes at Proof, Disproof, and Derivation

Note by Steven Zheng
4 years, 11 months ago

No vote yet
1 vote

</code>...<code></code> ... <code>.">   Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link]( link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in </span>...<span></span> ... <span> or </span>...<span></span> ... <span> to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}


There are no comments in this discussion.


Problem Loading...

Note Loading...

Set Loading...