Waste less time on Facebook — follow Brilliant.
×

Description of Set

Here are a number of problems based around the same configuration:

The solutions I have posted make use of areal/barycentric co-ordinates (two names for the same thing). These are useful in problems involving ratios of lengths, areas and cevians (lines from the verticies of a triangle to the sides that are concurrent at a point).

Full Description

Let \(O\) be a point in acute-angle triangle \(ABC\).

\(D\) is the intersection of \(AO\) and \(BC\). \(E,F\) are defined similarly.

\(X\) is the intersection of \(EF\) and \(AD\). \(Y,Z\) are defined similarly.

Let \(P\) be the intersection of \(XY\) and \(CF\) and \(Q\) be the intersection of \(XZ\) and \(BE\).

\(R\) is the intersection of \(AP\) with \(BC\) and \(S\) is the intersection of \(AQ\) with \(BC\).

Note by Sam Bealing
1 year, 7 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

This looks nice!
Could you explain the configuration in detail, and the results you've obtained?
To me, it looks like the succesive medial triangles of \( \triangle ABC \), with common centroid \( G \).

Ameya Daigavane - 1 year, 7 months ago

Log in to reply

I've added a full description of the configuration. I've started to write the results I've derived as problems. Here are links to the first two:

Sam Bealing - 1 year, 7 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...