# Difference of Powers

For integers $$a, b, m, n$$, prove that $gcd({a}^{m} - {b}^{m}, {a}^{n} - {b}^{n}) = {a}^{gcd(m,n)} - {b}^{gcd(m,n)}.$

Solution

Let $$d = gcd(m,n)$$, thus $$d|m$$ and $$d|n$$. We then let $$m=pd$$ and $$n=pd$$.

Hence $gcd({a}^{m} - {b}^{m}, {a}^{n} - {b}^{n}) = gcd({a}^{pd} - {b}^{pd},{a}^{qd} - {b}^{qd}).$

Let $$A ={a}^{d}$$ and $$B = {b}^{d}$$, it follows that

$gcd({a}^{m} - {b}^{m}, {a}^{n} - {b}^{n}) = gcd({A}^{p} - {B}^{p},{A}^{q} - {B}^{q}).$

Since $\frac{{A}^{p} - {B}^{p}}{A-B} = \sum _{ k=0 }^{ p-1 }{ { A }^{ p-k-1 }{ B }^{ k } }$ and $\frac{{A}^{q} - {B}^{q}}{A-B} = \sum _{ k=0 }^{ q-1 }{ { A }^{ q-k-1 }{ B }^{ k } }$ we get

$gcd({A}^{p} - {B}^{p},{A}^{q} - {B}^{q}) = A-B.$

Since $$A-B = {a}^{d} - {b}^{d}$$ and $$d =gcd(m,n)$$, we prove that

$gcd({a}^{m} - {b}^{m}, {a}^{n} - {b}^{n}) = {a}^{gcd(m,n)} - {b}^{gcd(m,n)}.$

Check out my other notes at Proof, Disproof, and Derivation

Note by Steven Zheng
4 years, 2 months ago

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold
- bulleted- list
• bulleted
• list
1. numbered2. list
1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$...$$ or $...$ to ensure proper formatting.
2 \times 3 $$2 \times 3$$
2^{34} $$2^{34}$$
a_{i-1} $$a_{i-1}$$
\frac{2}{3} $$\frac{2}{3}$$
\sqrt{2} $$\sqrt{2}$$
\sum_{i=1}^3 $$\sum_{i=1}^3$$
\sin \theta $$\sin \theta$$
\boxed{123} $$\boxed{123}$$

Sort by:

Could you please provide a proof for the sum you have claimed to be true? Thanks

- 2 years, 5 months ago