[Differential Geometry] Comparing the Christoffel Symbols for two Parametrisations of the Plane

We can parametrise an open set of the plane using Cartesian coordinates, \(\varphi: U \subset \mathbb{R}^2\rightarrow \mathbb{R}^3\), where \(\varphi(u,v) = (u,v,0)\). Then \(\varphi_u = (1,0,0)\) and \(\varphi_v = (0,1,0).\) \[\implies \varphi_{uu} = (0,0,0) = \varphi_{uv} = \varphi_{vv}.\]

So \(\Gamma_{ij}^k =0, \forall i,j,k =1,2\).

How about in polar coordinates? We can parametrise an open set of the plane with \(\varphi: V \subset \mathbb{R}^2 \rightarrow \mathbb{R}^3\) where \(\varphi(u,v) = (u\cos v, u\sin v, 0)\) this time.

Then \(\varphi_u = (\cos v, \sin v, 0),\) and \(\varphi_v = (-u \sin v, u\cos v, 0),\) and the coefficients of the first fundamental form are \[E= \cos^2v+sin^2v=1,\] \[F= -u\sin v\cos v+ u\sin v\cos v= 0,\] \[G=u^2.\] Considering the trihedron given by the vectors \(X_u, X_v, N\), taking inner product with \(X_u\), \(X_v\), we have the following system of equations:

(for reference, see fifth note on computing Gaussian curvature)

\[\Gamma^1_{11}E + \Gamma^2_{11}F = \frac{1}{2} E_u ,\] \[\Gamma^1_{11}F + \Gamma^2_{11}G = F_u-\frac{1}{2}E_v.\] \[\Gamma^1_{12}E + \Gamma^2_{12}F = \frac{1}{2}E_v,\] \[\Gamma^1_{12}F+ \Gamma^2_{12}G = \frac{1}{2} G_u.\] \[\Gamma^1_{22}E + \Gamma^2_{22}F = F_v - \frac{1}{2}G_u,\] \[\Gamma^1_{22}F + \Gamma^2_{22}G = \frac{1}{2}G_v. \] To find the Christoffel symbols, we let

\[ \begin{bmatrix} E & F \\ \\ F & G \\ \end{bmatrix} \begin{bmatrix} \Gamma^1_{11} & \Gamma^1_{12} & \Gamma^1_{22}\\ \\ \Gamma^2_{11} & \Gamma^2_{12} &\Gamma^2_{22}\\ \end{bmatrix} = \begin{bmatrix} \frac{1}{2} E_u & \frac{1}{2}E_v & F_v - \frac{1}{2}G_u\\ \\ F_u-\frac{1}{2}E_v & \frac{1}{2} G_u & \frac{1}{2}G_v\\ \end{bmatrix}.\]

Hence, \[ \begin{bmatrix} \Gamma^1_{11} & \Gamma^1_{12} & \Gamma^1_{22}\\ \\ \Gamma^2_{11} & \Gamma^2_{12} &\Gamma^2_{22}\\ \end{bmatrix} = \begin{bmatrix} E & F \\ \\ F & G\\ \end{bmatrix}^{-1} \begin{bmatrix} \frac{1}{2} E_u & \frac{1}{2}E_v & F_v - \frac{1}{2}G_u\\ \\ F_u-\frac{1}{2}E_v & \frac{1}{2} G_u & \frac{1}{2}G_v\\ \end{bmatrix}.\]

And since \(E_u =0, E_v =0, F_u =0, F_v=0, G_u=2u, G_v=0\), \((from E=1, F=0, G=u^2)\) \[RHS = \begin{bmatrix} ~1 & 0 ~ \\ \\ 0 & u^2 ~\\ \end{bmatrix}^{-1} \cdot \begin{bmatrix} ~0 & 0 & -u ~\\ \\ ~0 & u & 0 ~\\ \end{bmatrix}\]

\[= \begin{bmatrix} ~0 & 0 & -u ~\\ \\ ~0 & \frac{1}{u} & 0 ~\\ \end{bmatrix}.\]

Therefore, \(\Gamma_{11}^1=0, \Gamma_{12}^1=0, \Gamma_{22}^2=-u, \Gamma_{11}^2=0, \Gamma_{12}^2= \frac{1}{u}, \Gamma_{22}^2=0\).

In fact, we can check that the Gaussian curvature of the open set of the plane is zero \((K \equiv 0)\), by substituting the Christoffel symbols above in the formula for Gauss Curvature:

\[ -EK = (\Gamma_{12}^2)_u - (\Gamma_{11}^2)_v + \Gamma_{12}^1\Gamma_{11}^2+\Gamma_{12}^2\Gamma_{12}^2-\Gamma_{11}^2\Gamma_{22}^2-\Gamma_{11}^1\Gamma_{12}^2 .\]

\[-EK = \left(\frac{1}{2}\frac{G_u}{G}\right)_u - \left(-\frac{1}{2}\frac{E_v}{G}\right)_v - \frac{1}{4}\frac{E_u}{E}\frac{G_u}{G} - \frac{1}{4}\frac{E_v}{E}\frac{E_v}{G} +\frac{1}{4}\frac{E_v}{G}\frac{G_v}{G} +\frac{1}{4}\frac{G_u}{G}\frac{G_u}{G}\] \[ \implies -K = \left(\frac{1}{u}\right)_u -0+0+ \left(\frac{1}{u}\right)\left(\frac{1}{u}\right)-0-0\] \[ \implies -K = -\frac{1}{u^2} + \frac{1}{u^2} =0,~~\therefore K = 0\]

Note by Tasha Kim
3 months, 1 week ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

There are no comments in this discussion.

×

Problem Loading...

Note Loading...

Set Loading...