# Dirichlet Triple Integral

Evaluate the triple integral $I = \iiint { { x }^{ \alpha -1 }{ y }^{ \beta -1 }{ z }^{ \gamma -1 }dxdydz }$ over the curve ${\left(\frac{x}{a}\right)}^{p} +{\left(\frac{y}{b}\right)}^{q} + {\left(\frac{z}{c}\right)}^{r} = 1$.

Solution

Let $u = {\left(\frac{x}{a}\right)}^{p} \Rightarrow x = a{u}^{\frac{1}{p}}$ $v = {\left(\frac{y}{b}\right)}^{q} \Rightarrow y = b{v}^{\frac{1}{q}}$ $w = {\left(\frac{z}{c}\right)}^{r} \Rightarrow z = c{w}^{\frac{1}{r}}$

and

$dx = \frac{a}{p}{u}^{\frac{1}{p}-1}du$ $dy = \frac{b}{q}{v}^{\frac{1}{q}-1}dv$ $dz = \frac{c}{r}{w}^{\frac{1}{r}-1}dw$

After these substitutions, the integral becomes much lighter: $I = \frac{{a}^{\alpha}{b}^{\beta}{c}^{\gamma}}{pqr} \iiint { { u }^{ \frac{\alpha}{p} -1 }{ v }^{ \frac{\beta}{q} -1 }{ w }^{ \frac{\gamma}{r} -1 }dwdvdu }$ evaluated over the curve $u + v + w = 1$.

$I=\frac { { a }^{ \alpha }{ b }^{ \beta }{ c }^{ \gamma } }{ pqr } \int _{ 0 }^{ 1 }{ \int _{ 0 }^{ 1-u }{ \int _{ 0 }^{ 1-u-v }{ { u }^{ \frac { \alpha }{ p } -1 }{ v }^{ \frac { \beta }{ q } -1 }{ w }^{ \frac { \gamma }{ r } -1 }dwdvdu } } }$

$I=\frac { { a }^{ \alpha }{ b }^{ \beta }{ c }^{ \gamma } }{ pqr } \frac{r}{\gamma} \int _{ 0 }^{ 1 }{ \int _{ 0 }^{ 1-u }{ { u }^{ \frac { \alpha }{ p } -1 }{ v }^{ \frac { \beta }{ q } -1 }{ (1-u-v) }^{ \frac { \gamma }{ r } }dvdu } }$

Substitute $v = (1-u)t$ and $dv = (1 - u)dt$.

$I=\frac { { a }^{ \alpha }{ b }^{ \beta }{ c }^{ \gamma } }{ pqr } \frac { r }{ \gamma } \int _{ 0 }^{ 1 }{ { u }^{ \frac { \alpha }{ p } -1 }{ (1-u) }^{ \left( \frac { \beta }{ q } +\frac { \gamma }{ r } \right) }\int _{ 0 }^{ 1 }{ { t }^{ \frac { \beta }{ q } -1 }{ (1-t) }^{ \frac { \gamma }{ r } }dt } } .$

Here we apply two beta functions

$I=\frac { { a }^{ \alpha }{ b }^{ \beta }{ c }^{ \gamma } }{ pqr } \frac { r }{ \gamma } \frac { \Gamma \left( \frac { \alpha }{ p } \right) \Gamma \left( \frac { \beta }{ q } +\frac { \gamma }{ r } +1 \right) }{ \Gamma \left( \frac { \alpha }{ p } +\frac { \beta }{ q } +\frac { \gamma }{ r } +1 \right) } \frac { \Gamma \left( \frac { \beta }{ q } \right) \Gamma \left( \frac { \gamma }{ r } +1 \right) }{ \Gamma \left( \frac { \beta }{ q } +\frac { \gamma }{ r } +1 \right) } .$

Applying the gamma function property $\Gamma(n+1) = n\Gamma(n)$, we arrive at the result: $I=\frac { { a }^{ \alpha }{ b }^{ \beta }{ c }^{ \gamma } }{ pqr } \frac { \Gamma \left( \frac { \alpha }{ p } \right) \Gamma \left( \frac { \beta }{ q } \right) \Gamma \left( \frac { \gamma }{ r } \right) }{ \Gamma \left( \frac { \alpha }{ p } +\frac { \beta }{ q } +\frac { \gamma }{ r } +1 \right) } .$

Check out my other notes at Proof, Disproof, and Derivation Note by Steven Zheng
6 years, 2 months ago

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

• Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
• Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
• Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold
- bulleted- list
• bulleted
• list
1. numbered2. list
1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$ ... $$ or $ ... $ to ensure proper formatting.
2 \times 3 $2 \times 3$
2^{34} $2^{34}$
a_{i-1} $a_{i-1}$
\frac{2}{3} $\frac{2}{3}$
\sqrt{2} $\sqrt{2}$
\sum_{i=1}^3 $\sum_{i=1}^3$
\sin \theta $\sin \theta$
\boxed{123} $\boxed{123}$