Waste less time on Facebook — follow Brilliant.
×

Discussion: The Hoola-Field

A ring is of the shape of a hoola-hoop of negligible thickness. A ring of radius \( R \) carries a current \( I \). Prove that the magnetic field at a given point in the plane of the ring at a distance \( a \) from the center, due to the magnetic field of the ring, is \[ B = \dfrac {\mu_0}{2\pi} \cdot IR \cdot \displaystyle\int_{0}^{\pi} \dfrac {R - a \cos \theta}{\sqrt{\left( a^2 + R^2 - 2aR \cos \theta \right)^3}} \, \mathrm{d}\theta. \]

Note: This problem originally appeared on the IPhOO.

Note by Ahaan Rungta
3 years, 8 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

Check the solution to : Rotating Rod In Magnetic Field

Jatin Yadav - 3 years, 8 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...