\[\displaystyle \begin{align} &\sum_{n_1=1}^\infty \sum_{n_2=1}^\infty \cdots \sum_{n_k=1}^\infty (-1)^{n_1+n_2+\cdots+n_k}\dfrac{H_{n_1+n_2+\cdots+n_k}}{n_1 n_2 n_3 \cdots n_k} \\ &= (-1)^{k} \sum_{n=1}^{k} \binom{k}{n} (\log 2)^{k-n} \left[(-1)^n n! \zeta(n+1)+2(-1)^{n-1}\sum_{r=0}^n \binom{n}{r}r! (\log 2)^{n-r} {\rm Li}_{n+1}\left(\dfrac12\right) \right]\end {align}\]

The above is the claim which is proved here after in this note.

**Proof:**

First note that,

\[\displaystyle H-n=\int_0^1 \dfrac{1-x^n}{1-x}\; dx\]

Substituting this into our sum \(S\) we have,

\[\displaystyle \begin{align} S&= \int_0^1 \dfrac{\sum_{n_1,n_2,\cdots,n_k=1}^\infty \dfrac{(-1)^{n_1+n_2+\cdots+n_k}}{n_1 n_2\cdots n_k}-\sum_{n_1,n_2,\cdots,n_k=1}^\infty \dfrac{(-1)^{n_1+n_2+\cdots+n_k}x^{n_1+n_2+\cdots+n_k}}{n_1 n_2\cdots n_k}}{1-x}\; dx \\ &= (-1)^k \int_0^1 \dfrac{\log^k 2-\log^k (1+x)}{1-x}\; dx \\ &= (-1)^k \int_{1/2}^1 \dfrac{\log^k 2-\log^k (2x)}{1-x}\; dx \\ &= (-1)^{k} \sum_{n=1}^{k} \binom{k}{n} (\log 2)^{k-n} \int_{1/2}^1 \dfrac{\log^n x}{1-x}\; dx \end{align}\]

Now it remains to calculate ,

\[\displaystyle \int_{1/2}^1 \frac{\log^n x}{1-x}\; dx\]

To find this we evaluate a preliminary integral,

\[\displaystyle \begin{align} & \int_{1/2}^1 x^m \; dx = \dfrac{1}{m+1}-\dfrac{2^{-m}}{1+m} \\ & \int_{1/2}^1 x^m \log^n x \; dx = \dfrac{d^n}{dm^n}\left[\dfrac{1}{m+1}-\dfrac{2^{-m}}{1+m}\right] \\ & \int_{1/2}^1 x^m \log^n x \; dx = \dfrac{(-1)^n n!}{(m+1)^{n+1}}+2^{-m}(-1)^{n-1} \sum_{r=0}^n \binom{n}{r}\dfrac{(\log 2)^{n-r}r!}{(m+1)^{r+1}}\end{align}\]

Now coming back to the main integral,

\[\displaystyle \begin{align} \int_{1/2}^1 \frac{\log^n x}{1-x}\; dx &= \sum_{m=0}^\infty \int_{1/2}^1 x^m \log^n x \; dx \\ &= \sum_{m=0}^\infty \left[ \dfrac{(-1)^n n!}{(m+1)^{n+1}}+2^{-m}(-1)^{n-1} \sum_{r=0}^n \binom{n}{r}\dfrac{(\log 2)^{n-r}r!}{(m+1)^{r+1}}\right] \\ &= (-1)^n n! \zeta(n+1)+2(-1)^{n-1}\sum_{r=0}^n \binom{n}{r}r! (\log 2)^{n-r} {\rm Li}_{n+1}\left(\dfrac12\right) \end{align}\]

Putting this back,

\[\displaystyle S = (-1)^{k} \sum_{n=1}^{k} \binom{k}{n} (\log 2)^{k-n} \left[(-1)^n n! \zeta(n+1)+2(-1)^{n-1}\sum_{r=0}^n \binom{n}{r}r! (\log 2)^{n-r} {\rm Li}_{n+1}\left(\dfrac12\right) \right]\]

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestWhat? :/

Log in to reply

Same reaction here buddy:) I need to improve my calculus skills

Log in to reply

So do I :) She made me look like a noob :/

Log in to reply

Log in to reply

Log in to reply

He is so good at calculus that once his name was I guess published at the american mathematics daily becoz he sent a solution to a research level problm

Log in to reply

Great! I guess this something that he found interesting and wanted to share (Though i understand nothing of it)

Log in to reply

Very nice!

Log in to reply