Angela has to distribute 15 chocolates among 5 of her children cupcake, pancake, lollipop, pie and gingerbread. She needs to make sure that cupcake get at least 3 and at most 6 chocolates. Find the number of ways can this be done. The answer is 435

Okay now I am getting 425. this is my way.

The question is same as asking the number of integer solutions of the equation

\(15=a+b+c+d+e\) constraint to the relation that \( 3\leq a \leq 6\) and \(1\leq b,c,d,e\leq15\). Which is equivalent to finding the coefficient of \(x^{15}\) in \((x^3+x^4+x^5+x^6)(x+x^2 + \cdots+x^{15})^4 \).

I checked from wolfram alpha that the coefficient is coming out to be 425. But the answer is 435. Can anyone provide a correct solution and tell me what I am doing wrong?

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestYou're not doing anything wrong. A brute force check using Python also reports that the answer is indeed 425.

Log in to reply

Thanks. Then I guess there must have been some sort of printing mistake.

Log in to reply