Waste less time on Facebook — follow Brilliant.
×

Dividing Line

This is inspired by Mehul Chaturvedi's question Equally divided 10 points.

Consider all sets of 10 points in the plane, in which no 3 are collinear. A line \(l\) that connects 2 of these points is a dividing line if it divides the remaining points into 2 equal regions of 4 points each. Over all configurations, what is the maximum number of dividing lines?

By a simple counting argument, we can show that there are at least 5 dividing lines in any configuration.

If the 10 points form a convex set (ie no points are in the interior of the convex hull), then we can prove that there are exactly 5 dividing lines.

To get more than 5, consider the vertices of a 9-gon, along with the center. Then, any vertex that is connected to the center gives us a dividing line, and so there are (at least) 9 such lines.

Can we do better?

Can we generalize this to \( 10 = 2n \)?

Note by Calvin Lin
2 years, 12 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

There are no comments in this discussion.

×

Problem Loading...

Note Loading...

Set Loading...