Waste less time on Facebook — follow Brilliant.
×

Division algorithm -Doubled ,tripled

Note by Shivamani Patil
3 years ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

Division Algorithm states that \(a=q_{1}b+r_{1}\) where \(\leq r_{1} < b\) so we need to have \(r=r_{1} + 2b\) to get the wanted inequality. Now substituting \(r_{1}\) in terms of \(r\); \[a=q_{1}b+r-2b\] with which we can get the value of \(q\); \[a=(q_{1}-2)b+r\] Hence, \(q=q_{1}-2\), satisfying the equation \(a=qb+r\)

Marc Vince Casimiro - 3 years ago

Log in to reply

Use \leq for \( \leq \). Nice proof.

Log in to reply

Thanks! Had been trying to find that LaTeX.

Marc Vince Casimiro - 3 years ago

Log in to reply

@Marc Vince Casimiro With the new display Latex tools, you just need to find some problem / note / solution with the corresponding latex that you need :)

Calvin Lin Staff - 3 years ago

Log in to reply

qb+2b<=qb+r<qb+3b , b(q+2)<=qb+r<b(q+3) , b(q+2)<=a<b(q+3),divide by b>0, q+2<=a/b<q+3, This means that rational number a/b is between two integers...

Nikola Djuric - 3 years ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...