Division by 0

Lets start the discussion fresh. Some say \(\frac{0}{0}\) is 0 and others 1 and most undefined.

Me on the neither side. But will start with a simple elementary proof that \(\frac{0}(0}=0\)

\(\frac{0}{0} = 0\times\frac{1}{0} \\ = 0 \text{ (Since, 0 * n = 0)}\)

Can you guys think of other way than usual? The usual proof is being for undetermined. What about for '1'?

Other proofs include theoretical practical sense.

We give "nothing" the value of '0'. Division represents how many of x in m, for x÷m.

Logically, for 0÷0 := How many 'nothing' in 'nothing'. Practically 'nothing', of-course! So 0 again

n÷0 := How many something in nothing. There is nothing so how can there be something, so answer is nothing =: 0

Note by Vicky Vignesh
2 years, 3 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

Uhh... \( n \in \mathbb{R} \implies 0 \times n =0\). Note that \(\frac{1}{0}\) is not a real number!

Deeparaj Bhat - 2 years, 3 months ago

Log in to reply

Check out what is 0 divided by 0?

Calvin Lin Staff - 2 years, 3 months ago

Log in to reply

Here is some cool stuff where undefined objects have been discussed to some extent.

Agnishom Chattopadhyay Staff - 2 years, 3 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...