Waste less time on Facebook — follow Brilliant.
×

Does this sum have a closed form?

I was working with the identity \(\displaystyle\frac{e+e^\zeta +e^{\zeta ^2}+...+e^{\zeta ^{n-1}}}{n}-1=\sum_{k=1}^{\infty}\frac{1}{(nk)!}\), which can be proven by using the Taylor series for e^x and plugging in the nth roots of unity (zeta is a primitive nth root here).By summing the identity for all n, it in fact becomes \(\displaystyle\sum_{n=1}^{\infty}\frac{1}{\tau(n).n!}\), which is a much more natural sum to consider (here tau is the divisor function).Since \(1\leq\tau(n)<n+1\), we can show that the sum is between e-2 and e-1.

I was wondering if we could find an asymptotic for the partial sums or indeed find a formula for the infinite sum of any of these (the sum of the powers of e or the tau one).

If anyone has found any further result, please mention it in the comments.

Note by Bogdan Simeonov
2 years, 7 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

Consider writing \(\displaystyle \sum_{b=1}^{\infty}{\sum_{a=1}^{\infty}{\frac{1}{a b (ab)!}}}\) and then probably your given identity(after some integration). Maybe! I haven't tried so I am not sure!

Kartik Sharma - 2 years, 7 months ago

Log in to reply

I know how to transform it into the divisor sum, but I was wondering if we could find its exact value.Integration is not really a good idea, because tau is not a nice function to integrate.

Bogdan Simeonov - 2 years, 7 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...