Waste less time on Facebook — follow Brilliant.
×

Doubt

A block has 30% of it's volume immersed in water when the container at rest. What will be the % volume immersed when the block is accelerated upwards with acceleration a ?

Note by Rajdeep Dhingra
1 year, 11 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

We will solve for the percentage immersed at rest when we have the densities of liquid and block. Let the percentage be P.

We have \({\rho}_{block}Vg=P{\rho}_{liquid}Vg \)

Solving we have \( P = \dfrac{{\rho}_{block}}{{\rho}_{liqiud}} \)

It is worthy to note that the answer is independent of \(g\).

So when the container is accelerated only the effective gravity changes, hence the answer is independent of \(a\).

Ronak Agarwal - 1 year, 11 months ago

Log in to reply

Comment deleted Dec 29, 2015

Log in to reply

When you equate the V×d(solid)×g with V(submerged in water ×d(water) ×g, you get d(solid)=3d(water)/10. When you take the container upwards with an acceleration a the net acceleration will be (g+a) but it will be for both water and the object, so it will cancel. I think it doesn't matter for any value of a, what do you say?

Kushagra Sahni - 1 year, 11 months ago

Log in to reply

Me too same. But I'll wait till 'The Great Ronak Agarwal' answers.

Rajdeep Dhingra - 1 year, 11 months ago

Log in to reply

@Rajdeep Dhingra Let V denote volume and d denote density.

\( \dfrac{V_{in}}{V_{total}} = \dfrac{d_{body}}{d_{liquid}} \) which is independent of the effective acceleration as it cancels out on both sides.

Vighnesh Shenoy - 1 year, 11 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...