×

# D.Series of $$\sigma$$

What is special about the sequence below ?

$8505 , 85050 , 850500 , 8505000 , ......$

Note by Chinmay Sangawadekar
11 months, 1 week ago

## Comments

Sort by:

Top Newest

All that i can see is your question and $$\displaystyle \sum _{ n=1 }^{ \infty }{ \frac { { \sigma }_{ 2 }\left( n \right) }{ { n }^{ 6 } } } =\frac { { \pi }^{ 6 } }{ 945 } \times \frac { { \pi }^{ 4 } }{ 90 } =\frac { { \pi }^{ 10 } }{ 85050 }$$ · 10 months, 1 week ago

Log in to reply

Go further .... Try with sigma_3 · 10 months, 1 week ago

Log in to reply

Can you actually find 8505000 or 8505? · 10 months, 1 week ago

Log in to reply

It will give odd zeta which is what you do not what as they are irreducable · 10 months, 1 week ago

Log in to reply

Sorry not with odd zetas try with even zetas andbakso change power of n with change in sigma_x · 10 months, 1 week ago

Log in to reply

That will give odd zetas · 10 months, 1 week ago

Log in to reply

Yes you are right Joel. · 10 months, 1 week ago

Log in to reply

I see the pattern · 10 months, 1 week ago

Log in to reply

Is a geometric progression with reason 10 · 10 months, 1 week ago

Log in to reply

Next number 85050000. @Chinmay Sangawadekar · 11 months, 1 week ago

Log in to reply

Not in that sense . · 11 months, 1 week ago

Log in to reply

Then, what is the next number? · 11 months, 1 week ago

Log in to reply

I think your number is correct , but i want its speciality · 11 months, 1 week ago

Log in to reply

no '0" after 5 in 1st...... 1 '0' after 5 in 2nd.....Therefore ans is 85050000.I did like this. :P · 11 months, 1 week ago

Log in to reply

nope it is related to Dirichlet series . · 11 months, 1 week ago

Log in to reply

Something related to zeta as the sigma is the divisor function · 11 months, 1 week ago

Log in to reply

You. Are right ... Dirichlet's series of sigma function... · 11 months, 1 week ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...