Since this is an indeterminate form of the $\dfrac{0}{0}$ form, we can simply use the L.Hospital's Rule to evaluate the given limit, which is as you follow:

There will be no difference in the answer whether you solve it using L.Hospital's rule or not. But yeah, there obviously exists a way to evaluate it without using L.Hospital's rule, as Pranshu did. And notice that the answer is still the same.

@Sandeep Bhardwaj
–
We could just use L'Hopital's rule but sometimes we can search about another answer ...I was looking for an approach that does not use this rule and I am sorry I didn't mention , but your solution still elegant :))

$</code> ... <code>$</code>...<code>."> Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in $</span> ... <span>$ or $</span> ... <span>$ to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestWithout L'Hôpital's rule

Rationalize the denominator by multiplying the expression with $\frac{\sqrt{x} + 1} {\sqrt{x} + 1}$. Distribute the $n$ and rewrite the expression as

$\lim _{ x \to 1 } \frac{ (x - 1) + (x^{2} - 1) + (x^{3} - 1) + \cdots + (x^{n} - 1) }{x -1} \cdot (\sqrt{x} + 1)$

$= \lim _{ x \to 1 } \left( \frac{ x - 1 } { x -1 } + \frac{ x^{2} - 1 } { x -1 } + \frac{ x^{3} - 1 } { x -1 } + \cdots + \frac{ x^{n} - 1 } { x -1 }\right) \cdot (\sqrt{x} + 1)$

$= \lim _{ x \to 1 } \left( (1) + (1 + x) + (1 + x + x^{2}) + (1 + x + x^{2} + x^{3}) + \cdots + (1 + x + x^{2} + x^{3} + \cdots + x^{n-1}) \right) \cdot (\sqrt{x} + 1)$

Now solve by substitution:

$= ( 1 + 2 + 3 + \cdots + n) \cdot (1 + 1) = \boxed{n(n+1)}$

Log in to reply

Amazing solution! :)

Log in to reply

$n^{2}+n$???

Log in to reply

Did you use L.Hospital's Rule ?

Log in to reply

Yes. Can u prove the L.hospital rule?

Log in to reply

n(n+1)

Log in to reply

Did you use L.Hospital's Rule ?

Log in to reply

Yes. However I cannot post my solution. My Latex skills s*cks. Sorry.

Log in to reply

n(n+1) May be thats the answer. If it is correct please notify.

Log in to reply

Did you use L.Hospital's Rule ?

Log in to reply

n(n+1)

Log in to reply

Did you use L.Hospital's Rule ?

Log in to reply

n(n+1)

Log in to reply

Since this is an indeterminate form of the $\dfrac{0}{0}$ form, we can simply use the L.Hospital's Rule to evaluate the given limit, which is as you follow:

\[\begin{array}{} & \lim_{x\to1} \dfrac{x+x^2+x^3+\ldots +x^n-n}{\sqrt x-1} \\ & = \lim_{x \to 1} \dfrac{1+2x+3x^2+\ldots +nx^{n-1}}{\dfrac{1}{2 \sqrt x}} \\ & = n(n+1) \end{array} \]

Log in to reply

There is an answer without using L.Hospital's Rule ,....can u find it ?

Log in to reply

There will be no difference in the answer whether you solve it using L.Hospital's rule or not. But yeah, there obviously exists a way to evaluate it without using L.Hospital's rule, as Pranshu did. And notice that the answer is still the same.

Log in to reply

Log in to reply

n(n+1)

Log in to reply