×

# Try to solve it 2

$\large \lim_{x\to1} \frac{x+x^2+x^3+\ldots +x^n-n}{\sqrt x-1} = \ ?$

Note by A K
1 year, 10 months ago

Sort by:

Without L'Hôpital's rule

Rationalize the denominator by multiplying the expression with $$\frac{\sqrt{x} + 1} {\sqrt{x} + 1}$$. Distribute the $$n$$ and rewrite the expression as

$\lim _{ x \to 1 } \frac{ (x - 1) + (x^{2} - 1) + (x^{3} - 1) + \cdots + (x^{n} - 1) }{x -1} \cdot (\sqrt{x} + 1)$

$= \lim _{ x \to 1 } \left( \frac{ x - 1 } { x -1 } + \frac{ x^{2} - 1 } { x -1 } + \frac{ x^{3} - 1 } { x -1 } + \cdots + \frac{ x^{n} - 1 } { x -1 }\right) \cdot (\sqrt{x} + 1)$

$= \lim _{ x \to 1 } \left( (1) + (1 + x) + (1 + x + x^{2}) + (1 + x + x^{2} + x^{3}) + \cdots + (1 + x + x^{2} + x^{3} + \cdots + x^{n-1}) \right) \cdot (\sqrt{x} + 1)$

Now solve by substitution:

$= ( 1 + 2 + 3 + \cdots + n) \cdot (1 + 1) = \boxed{n(n+1)}$ · 1 year, 10 months ago

Amazing solution! :) · 1 year, 5 months ago

n(n+1) · 1 year ago

n(n+1) · 1 year, 10 months ago

Did you use L.Hospital's Rule ? · 1 year, 10 months ago

n(n+1) May be thats the answer. If it is correct please notify. · 1 year, 10 months ago

Did you use L.Hospital's Rule ? · 1 year, 10 months ago

n(n+1) · 1 year, 10 months ago

Did you use L.Hospital's Rule ? · 1 year, 10 months ago

@A K Yes. However I cannot post my solution. My Latex skills s*cks. Sorry. · 1 year, 10 months ago

$$n^{2}+n$$??? · 1 year, 10 months ago

Did you use L.Hospital's Rule ? · 1 year, 10 months ago

@A K Yes. Can u prove the L.hospital rule? · 1 year, 10 months ago

Since this is an indeterminate form of the $$\dfrac{0}{0}$$ form, we can simply use the L.Hospital's Rule to evaluate the given limit, which is as you follow:

$\begin{array}{} & \lim_{x\to1} \dfrac{x+x^2+x^3+\ldots +x^n-n}{\sqrt x-1} \\ & = \lim_{x \to 1} \dfrac{1+2x+3x^2+\ldots +nx^{n-1}}{\dfrac{1}{2 \sqrt x}} \\ & = n(n+1) \end{array}$ · 1 year, 10 months ago

There is an answer without using L.Hospital's Rule ,....can u find it ? · 1 year, 10 months ago

@A K There will be no difference in the answer whether you solve it using L.Hospital's rule or not. But yeah, there obviously exists a way to evaluate it without using L.Hospital's rule, as Pranshu did. And notice that the answer is still the same. · 1 year, 10 months ago