Prove using "Epsilon-Delta" definition of two-sided limit:

\[ \large{ \lim_{x \rightarrow 3}{x^2}=9} \]

DefinitionLet \(f(x)\) be defined for all \(x\) in some open containing the number \(a\) with possible exception that \(f(x)\) need not to be defined at \(a\). We will write \[\large{ \lim_{x \rightarrow a}{f(x)}=L} \] if given any number \( \epsilon > 0\) we can find a number \( \delta > 0\) such that \[\large{ |f(x)-L|< \epsilon \quad \text{if} \quad 0 < |x-a|< \delta}\]

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestLike most problems, I'm doing those in a somewhat "un-orthodox" way.

Given \(\epsilon>0\). If \(\epsilon\leq 1\), let \(\delta=\frac{\epsilon}{12}\). Now \(3-\frac{\epsilon}{12}<x<3+\frac{\epsilon}{12}\) implies \(9-\frac{\epsilon}{2}+\frac{\epsilon^2}{12^2}<x^2<9+\frac{\epsilon}{2}+\frac{\epsilon^2}{12^2}\) so that \(|x^2-9|<\epsilon\) as required. If \(\epsilon>1\) let \(\delta=\frac{1}{12}\).

Log in to reply

@Otto Bretscher, @Pi Han Goh, @Calvin Lin

Log in to reply

Epsilon-delta definition of a limit

Log in to reply