\[\large \int_{0}^{\infty} \frac{e^{-x} \sin(x)\cos(x)}{\sqrt{x}}\,dx = \frac{\sqrt{\pi}}{2\cdot \sqrt[4]{5}} \cdot \sin\left(\frac{1}{2} \tan^{-1}(2)\right)\]

It is trivial to prove the equation above using DogTeX, but can you prove it without DogTeX?

This is a part of the set Formidable Series and Integrals

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestLet \(\displaystyle \text{I} = \int_{0}^{\infty} \dfrac{e^{-x} \sin(x) \cos(x)}{\sqrt{x}} \mathrm{d}x\)

\(\displaystyle =\dfrac{1}{2} \int_{0}^{\infty} \dfrac{e^{-x} \sin(2x)}{\sqrt{x}} \mathrm{d}x \)

\(\displaystyle = \dfrac{1}{4i} \int_{0}^{\infty} \dfrac{e^{-x} (e^{2ix} - e^{-2ix})}{\sqrt{x}} \mathrm{d}x \)

\(\displaystyle = \dfrac{\text{A}-\text{A}^{*}}{4i}\)

\(\displaystyle = \dfrac{1}{2} \Im (\text{A})\)

where \(\displaystyle \text{A} = \int_{0}^{\infty} \dfrac{e^{-x(1-2i)}}{\sqrt{x}} \mathrm{d}x \)

Note that,

\(\displaystyle \Gamma (t) = \int_{0}^{\infty} x^{t-1} e^{-x} \mathrm{d}x \)

Substituting \(x \mapsto ax\), we have,

\(\displaystyle \Gamma(t) = a^{t} \int_{0}^{\infty} x^{t-1} e^{-ax} \mathrm{d}x\)

\(\displaystyle \implies \text{A} = \Gamma \left( \dfrac{1}{2} \right) \dfrac{1}{\sqrt{1-2i}} \)

\(\displaystyle \implies \text{I} = \dfrac{\sqrt{\pi}}{2} \Im \left( \dfrac{1}{\sqrt{1-2i}} \right) \)

\( \displaystyle = \boxed{\dfrac{\sqrt{\pi}}{2 \sqrt[4]{5}} \cdot \sin\left(\dfrac{1}{2} \tan^{-1}(2)\right)} \)

Log in to reply

@Ishan Singh good ishu... :)

Log in to reply

Wonderful work as usual! +1

Log in to reply

Log in to reply

So cute!!!!

Log in to reply

Marvellous solution! +1

Log in to reply

LOL!

Log in to reply