Hello everyone!!

While researching on a series, I found something magical. Can someone explain this??

Let \[S=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+ ……\]

\[S= (1+\frac{1}{3}+\frac{1}{5}+……)+\frac{1}{2} [1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+……] \]

\[S=(1+\frac{1}{3}+\frac{1}{5}+....)+\frac{S}{2}\]

\[\frac{S}{2}=1+\frac{1}{3}+\frac{1}{5}+…\] \[eq^{n} (i)\]

Now from definition of S, \[\frac{S}{2}=\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+….\] \[eq^{n} (ii)\]

Comparing \(eq^{n} (i)\) and \(eq^{n} (ii)\) and transposing, We get \[1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+…..=0\]

But obviously, \[(1-\frac{1}{2})+(\frac{1}{3}-\frac{1}{4})+….>0\]

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestHere S is not a converging series. The sum of the given series diverges. So you are treating S as a number, but its sum goes to infinity ( and infinity can not be considered as number , because it does not follow the properties of numbers). So unknowingly you are applying algebraic operations on infinity (for you it is S) , which is a flaw in this your something magical. !!!!!!!!

Log in to reply

Thanx dude! I got what you are saying! But I dont know much about convergence of a series! Any good and reliable source? Well, I tried to learn convergence from "Hall and Knight". I need some more help!

Log in to reply

Go for some UnderGraduate Maths book about sequence and series. You will find the complete conceptual information about the convergence and divergence. Hopefully, it will help you.

Log in to reply