Waste less time on Facebook — follow Brilliant.
×

Exploring the Divisor Function

This note is part of the set Exploring the Divisor Function.

In this set, we aim to get a general form for this sum:

\[\sum _{n=1}^{\infty}\frac{d\left(kn\right)}{n^2}\]

Where \(k\) is a positive integer.

So, instead of giving out everything on a note, why not split it up into several problems so that everybody can try it out by themselves?

I will give a clue here, and then you can go ahead to solve the first problem of this set, slowly progressing to the last problem, where you will finally be able to find a general form of the sum. You may skip steps, because your approach might be better than mine. If you do have a better approach, do post it!

Here's the first clue:

If \(f(n)\) is completely multiplicative, that is \(f(ab)=f(a)f(b)\), then

\[f*f(n)=d(n)f(n)\]

\[\left[\sum _{n=1}^{ \infty}\frac{f\left(n\right)}{n^s}\right]^2=\sum _{n=1}^{\infty }\frac{f\left(n\right)d\left(n\right)}{n^s}\]

Where \(*\) is the Dirichlet Convolution

and \(d(n)\) counts the number of divisors n.


I would post the solutions for the problems soon.

Note by Julian Poon
1 year, 9 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

I cannot work it out for 4 as \(k\) Can you help?

Joel Yip - 1 year, 8 months ago

Log in to reply

Oh yeah, thanks for commenting here. I forgot to add the solutions...

If you want to consider k=4, generalise it to \(k=p^a\), where p is prime. I'll post a solution to part 3 of the set by tomorrow, where you can use it for \(k=4\).

You can use part 1 of this set as a clue to part 3, but you'll have to be more creative.

Julian Poon - 1 year, 8 months ago

Log in to reply

thanks!

Joel Yip - 1 year, 8 months ago

Log in to reply

@Joel Yip I have posted a solution to part 3.

Julian Poon - 1 year, 8 months ago

Log in to reply

my mind is blown

Joel Yip - 1 year, 8 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...