Waste less time on Facebook — follow Brilliant.
×

An Exponent Theorem

Let us consider the statement \(b^n - b^{n-1} = b^{n-1} (b-1)\).

By quotient property of exponents,

\(b^n \div b^{n-1} = b\)

Subtracting 1 from both sides,

\((b^n \div b^{n-1}) - 1 = b - 1\)

\((b^n \div b^{n-1}) - (b^{n-1} \div b^{n-1}) = b - 1\)

\( (b^n - b^{n-1}) \div b^{n-1} = b - 1\)

Multiplying both sides by \( b^{n-1} \),

\(\boxed{b^n - b^{n-1} = b^{n-1} (b-1)}\)


Let \(b = \big\{x | x \in \mathbb{R}\big\}\).

If \(b = 0\), let \(n - 1 = \big\{x | x \in (1,+\infty)\big\}\).

Note by Adriel Padernal
2 years, 1 month ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

You can use the property of the exponents. Provided that \(b \neq 0\), \[b^n-b^{n-1} = b^{n-1}(\frac{b^n}{b^{n-1}}-\frac{b^{n-1}}{b^{n-1}})\] \[b^n-b^{n-1} = b^{n-1}(b^{n-(n-1)}-b^{(n-1)-(n-1)})\] \[b^n-b^{n-1} = b^{n-1}(b^1-b^0) = b^{n-1}(b-1)\] \[Q.E.D.\]

Kay Xspre - 2 years, 1 month ago

Log in to reply

Thank you very much, I have now provided more supportive evidence for my theorem.

Adriel Padernal - 2 years ago

Log in to reply

Kay's comment isn't just "supportive evidence". It is a proof of the statement which you stated.

Calvin Lin Staff - 2 years ago

Log in to reply

@Calvin Lin Thank you, I understand. At first, I was doubtful in a way that others might correct me for calling it "proof" so I decided to call it "supportive evidence."

Adriel Padernal - 2 years ago

Log in to reply

@Adriel Padernal Thanks for updating the note!

It can take a while for you to become familiar with mathematical rigor. We all have to start somewhere, and I'm glad that you're learning!

Calvin Lin Staff - 2 years ago

Log in to reply

Note that you have not proven the theorem. You have only demonstrated that it is true in 5 specific cases.

Calvin Lin Staff - 2 years, 1 month ago

Log in to reply

Thank you for commenting your thoughts on this. This is my first note on Brilliant. Thank you again.

Adriel Padernal - 2 years, 1 month ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...