Waste less time on Facebook — follow Brilliant.
×

Exponential Equation

What is the number of solutions to the equation \[\large \sin(e^x) = 5^x + 5^{-x} ? \]

Note by D K
1 year, 6 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

\(\sin(e^x)\), because it is always the sine of a real number, has a maximum of 1 (whenever \(e^x = \pi/2 + k\pi\) for some integer \(k\)), and \(5^x+5^{-x}\) has its minimum at \(x=0\), where it is \(2\), so there are no solutions.

You can find that minimum with differential calculus, or in a simpler way. The function is obviously symmetric around the \(y\) axis, so we can establish that it rises away from there as \(x\) gets larger, and by symmetry we can be sure it rises in the other direction too. For \(x>0\), the function \(5^x\) increases faster than \(5^{-x}\) decreases, so the sum of those functions increases as \(x\) does:

\[5^{-(x+k)}-5^{-x}=\frac{1}{5^{x+k}}-\frac{1}{5^x} = \frac{5^x-5^{x+k}}{5^{2x+k}} = [5^{x+k}-5^x]\cdot\frac{-1}{5^{2x+k}}\]

(And \(5^{2x+k} > 1\) for \(x>0\).)

Mark C - 1 year, 6 months ago

Log in to reply

Great observation​!

Calvin Lin Staff - 1 year, 6 months ago

Log in to reply

Thanks! It was actually not quite correct as I originally stated it, but I think it's better now.

Mark C - 1 year, 6 months ago

Log in to reply

@Mark C The easy way to find the minimum is to apply the arithmetic mean - geometric mean inequality.

\[ 5^ x + 5 ^ {-x} \geq 2 \times \sqrt{ 5 ^ x \times 5 ^ {-x} } = 2 \]

Equality holds if \( 5 ^ x = 5 ^ {-x} \), or when \( x = 0 \).

Calvin Lin Staff - 1 year, 6 months ago

Log in to reply

Go Here ,The easiest Way to Solve this Problem is by using A.M-G.M inequality

Sabhrant Sachan - 1 year, 6 months ago

Log in to reply

Let y = 5^x. So, 1/y = 5^(-x). Note that y, 1/y > 0. Thus, by AM-GM inequality y + 1/y > = 2.
Clearly, -1 =< sin(e^x) =< 1. Thus, sin(e^x) = 5^x + 5^(-x) is a contradiction. Therefore, no real value of x exist in this equation.

I am currently think for nonreal value of x.

Paul Ryan Longhas - 1 year, 6 months ago

Log in to reply

When solving over the complex, there is almost always a solution. It's a result from complex analysis (Picard's theorem) that given any analytic function on the plane, the image misses at most one point.

Calvin Lin Staff - 1 year, 6 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...