This discussion board is a place to discuss our Daily Challenges and the math and science
related to those challenges. Explanations are more than just a solution — they should
explain the steps and thinking strategies that you used to obtain the solution. Comments
should further the discussion of math and science.

When posting on Brilliant:

Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .

Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.

Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.

Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

Markdown

Appears as

*italics* or _italics_

italics

**bold** or __bold__

bold

- bulleted - list

bulleted

list

1. numbered 2. list

numbered

list

Note: you must add a full line of space before and after lists for them to show up correctly

I always use Euler's totient function since it reduces exponents into a fathomable number. (Though I still do not know the proof of the theorem, would be great if someone presents one)

Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in`\(`

...`\)`

or`\[`

...`\]`

to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewest$\phi(2014)=936$

And $\gcd(3,2014)=1$

By Euler-Fermat theorem we have $3^{\phi(2014)}\equiv 3^{936}\equiv 1\mod 2014$

$\Rightarrow 3^{936}\times 3^6\equiv 3^{942}\equiv 729 \mod 2014$

Log in to reply

please explain it or give another way please please.........

Log in to reply

Sorry for my mistake I've now edited it. There's no other method to my knowledge. U can look up this theorem in the brilliant wiki.

Log in to reply

@GAUTAM SHARMA Check out Euler's Theorem in the Modular Arithmetic Wiki. That should provide you with explanations about how to approach problems like this.

Log in to reply

Log in to reply

Log in to reply

I always use Euler's totient function since it reduces exponents into a fathomable number. (Though I still do not know the proof of the theorem, would be great if someone presents one)

Log in to reply

U may find it here

Log in to reply

I want to ask How to read it or interpret this like when we do 12/3=4 , we say when 12 is divided by 3 we get 4 as a quotient.How to read it?

Log in to reply

$12\equiv 1 \mod 11$

is read as "12 congruent to 1 mod 11" or "12 equivalent to 1 mod 11"

Log in to reply