Waste less time on Facebook — follow Brilliant.
×

Factorisation of cubic equation

can we factories \(x^3+x+1=0\)

Note by Chinmay Sangawadekar
3 years, 6 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

Compare it with the identity \((u+v)^3-3uv(u+v)-(u^3+v^3)=0\).We get the following system of equations: \[u+v=x\\-3uv=1\rightarrow uv=\frac{-1}{3}\rightarrow u^3v^3=\frac{-1}{27}\\u^3+v^3=-1\] Construct an equation in variable \(z\) having roots \(u^3\) and \(v^3\). \[(z-u^3)(z-v^3)=z^2-(u^3+v^3)z+u^3v^3=z^2+1z-\frac{1}{27}=0\rightarrow 27z^2+27z-1=0\] Plugging the values in the quadratic formula,we get: \[\frac{-27\pm\sqrt{27^2-4(27)(-1)}}{2(27)}\\=\frac{-27\pm\sqrt{729+108}}{54}\\=\frac{-27\pm\sqrt{837}}{54}\\=\frac{-27\pm3\sqrt{93}}{54}=\frac{-9\pm\sqrt{93}}{18}\] So \(u^3=\frac{-9+\sqrt{93}}{18}\rightarrow u=\sqrt[3]{\frac{-9+\sqrt{93}}{18}}\approx 0.329452338\)and \(v^3=\frac{-9-\sqrt{93}}{18}\rightarrow v=\sqrt[3]{\frac{-9-\sqrt{93}}{18}}\approx -1.011780141\)and \(x=u+v=0.329452338-1.011780141=-0.682327803\).Dividing by \((x+0.682327803)\) and discarding the remainder (since we are working with approximations there will be some very small remainders which would be 0 had we divided by the exact value) we get \(x^2-0.682328x+1.46557\) which has roots \(0.341164\pm1.16154i\).So the cubic can be factored as \((x+0.682327803)(x-(0.341164+1.16154i))(x-(0.341164-1.16451i))\).

Abdur Rehman Zahid - 3 years ago

Log in to reply

niceone

Rowegie Lambojon - 3 years, 6 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...