Waste less time on Facebook — follow Brilliant.
×

Find all solutions.....

\(4x^{3}\) \(-\) \(3x\) \(-1\) \(=\) \(2y^{2}\). Find all positive integral solutions.... I solved it and I found that there will be infinitely many sol. \(x\) = \(2k^{2} + 1\),, \(y\) = \(4k^{3} + 3k\) where k is any positive integer....... Please verify whether I am correct.....

Note by Alpha Beta
4 years, 5 months ago

No vote yet
2 votes

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

Yes, provided that \(x, y\) are positive integers, you are correct. But, it also holds for negative \(k\) such that \(y\) is negative.

Aditya Parson - 4 years, 5 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...