This discussion board is a place to discuss our Daily Challenges and the math and science
related to those challenges. Explanations are more than just a solution — they should
explain the steps and thinking strategies that you used to obtain the solution. Comments
should further the discussion of math and science.

When posting on Brilliant:

Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .

Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.

Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.

Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

Markdown

Appears as

*italics* or _italics_

italics

**bold** or __bold__

bold

- bulleted - list

bulleted

list

1. numbered 2. list

numbered

list

Note: you must add a full line of space before and after lists for them to show up correctly

As an experience for comparing ability of mathematical software, I recommend you that try to plot this function by some popular software such as Mathlab, Maple, Derive, GeoGebra and so on. According to my experience Derive was the best for this especial function. I am waiting for the final answer.

Actually, since sin (and /) are defined for (almost) all reals and ln is defined for positive reals (it might be possible to define extent ln to the imaginary numbers, but that's not exactly going to be ln any more, just like how the zeta function is not the factorial function), the domain is actually x>0, since it's defined for all x>0. Oh, excepting 1, since ln (1)=0, and division by 0 is undefined.

But we're not going to be satisfied with the domain, so let's proceed to the codomain.

Basically it has exactly the same codomain as f(x)=sin x/ x for all real values of x (since ln x has the codomain of all reals).
We know that sin(x)/x-->0 as x-->0, and though it might be overkill, we can prove that sin(x)/x<1 using the Taylor series. We can then find the lower limit (as x<0) via differentiation as well*, but since that is quite tedious, and probably inexact, I have used Wolfram Alpha to estimate the lower bound at -0.217233628..., where ln (x)= 4.49340945790906...

*Set the gradient to 0 and argue that it has to lie between x= pi and x=2pi, then solve

Please avoid taking logarithms of anything other than the positive real numbers. There is more understanding involved when we want to talk about $\log -1$, in part because it is a multi-valued function, and doesn't behave exactly like what you would expect from your experience working with $\log$ normally.

Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in`\(`

...`\)`

or`\[`

...`\]`

to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestAs an experience for comparing ability of mathematical software, I recommend you that try to plot this function by some popular software such as Mathlab, Maple, Derive, GeoGebra and so on. According to my experience Derive was the best for this especial function. I am waiting for the final answer.

Log in to reply

With WolphramAlpha

I plug in straight what you ask.

I'm not saying it can't be wrong, but its very rare.

Log in to reply

Actually, since sin (and /) are defined for (almost) all reals and ln is defined for positive reals (it might be possible to define extent ln to the imaginary numbers, but that's not exactly going to be ln any more, just like how the zeta function is not the factorial function), the domain is actually x>0, since it's defined for all x>0. Oh, excepting 1, since ln (1)=0, and division by 0 is undefined.

But we're not going to be satisfied with the domain, so let's proceed to the codomain.

Basically it has exactly the same codomain as f(x)=sin x/ x for all real values of x (since ln x has the codomain of all reals). We know that sin(x)/x-->0 as x-->0, and though it might be overkill, we can prove that sin(x)/x<1 using the Taylor series. We can then find the lower limit (as x<0) via differentiation as well*, but since that is quite tedious, and probably inexact, I have used Wolfram Alpha to estimate the lower bound at -0.217233628..., where ln (x)= 4.49340945790906...

*Set the gradient to 0 and argue that it has to lie between x= pi and x=2pi, then solve

Log in to reply

Thank you for your reply but I think you should look at this problem more easy.

Log in to reply

yes x>0 and x is not equal to 1

Log in to reply

Thank you but not complete.

Log in to reply

hello,the domain is :x belong to real such that x is greater than 1 or 0<x<1

Log in to reply

let's wait till next days for more answers.

Log in to reply

I'm not sure, but I'd say $x \in R^+ - \{1\}$

Log in to reply

Wait, by taking euler's identity into account, I think we could extend the domain further to imaginary numbers as well ..

Log in to reply

Please avoid taking logarithms of anything other than the positive real numbers. There is more understanding involved when we want to talk about $\log -1$, in part because it is a multi-valued function, and doesn't behave exactly like what you would expect from your experience working with $\log$ normally.

Log in to reply

Let's wait for next answers. ;)

Log in to reply