\[ S = \sum_{n=0}^{\infty} \frac{1}{1+n^2} \\ \\ = \frac{1}{2i} \sum_{n=0}^{\infty} \left( \frac{1}{n-i} - \frac{1}{n+i} \right) \]
Now , using the unique property of digamma function that is it satisfies, \[ \psi(x+1)-\psi(x)=\frac{1}{x} \]

We get that , sum is equivalent to, \[ 1+ \frac{\psi(1+i) - \psi(1-i)}{2i} \]
Now, again using reflection formula, this can be easily calculated and it equals,

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestEuler while solving basel problem considered the function \(sin(x)\) as an infinte product as :

\(sin(x)=x\displaystyle \prod _{ n=1 }^{ \infty }{ (1-\dfrac { { x }^{ 2 } }{ { (n\pi ) }^{ 2 } } ) }\)

Taking \(ln()\) both sides we get:

\(ln(sin(x))=ln(x)+\displaystyle \sum _{ n=1 }^{ \infty }{ ln(1-\dfrac { { x }^{ 2 } }{ ({ n\pi })^{ 2 } } ) }\)

Differentiating both sides with respect to \(x\) we get :

\(cot(x)=\dfrac { 1 }{ x } +\displaystyle \sum _{ n=1 }^{ \infty }{ \dfrac { 2x }{ { (n\pi ) }^{ 2 } } \dfrac { 1 }{ (\dfrac { { x }^{ 2 } }{ { (n\pi ) }^{ 2 } } -1) } }\)

\(\Rightarrow cot(x)=\dfrac { 1 }{ x } +\displaystyle \sum _{ n=1 }^{ \infty }{ \dfrac { 2x }{ ({ x }^{ 2 }-{ (n\pi ) }^{ 2 }) } }\)

Putting \(\pi x\) instead of \(x\) we get :

\(cot(\pi x)=\dfrac { 1 }{ \pi x } +\dfrac { 1 }{ \pi } \displaystyle \sum _{ n=1 }^{ \infty }{ \frac { 2x }{ ({ x }^{ 2 }-{ n }^{ 2 }) } }\)

Multiplying both sides with \(\pi x\) we get :

\(\pi xcot(\pi x)=1+{ 2x }^{ 2 } \displaystyle \sum _{ n=1 }^{ \infty }{ \frac { 1 }{ ({ x }^{ 2 }-{ n }^{ 2 }) } } \)

Also we know that \(icot(ix)=coth(x)\)

Putting \(ix\) in place of \(x\) we get :

\(\pi xcoth(\pi x)=1+2{ x }^{ 2 } \displaystyle \sum _{ n=1 }^{ \infty }{ \frac { 1 }{ { x }^{ 2 }+{ n }^{ 2 } } } \)

Put \(x=1\) to get :

\(\pi coth(\pi )=1+2\displaystyle \sum _{ n=1 }^{ \infty }{ \frac { 1 }{ n^{ 2 }+{ 1 } } } \)

\(=2\displaystyle \sum _{ n=0 }^{ \infty }{ \frac { 1 }{ n^{ 2 }+{ 1 } } } -1\)

\(\Rightarrow \displaystyle \sum _{ n=0 }^{ \infty }{ \frac { 1 }{ n^{ 2 }+{ 1 } } } =\frac { \pi coth(\pi )+1 }{ 2 } \)

\(\Rightarrow \displaystyle \sum_{n=0}^{\infty}{\frac{1}{n^{2}+1}}=\frac{\pi+1}{2}+\frac{\pi}{e^{2\pi}-1}\)

Log in to reply

That's some identity, isn't it? Nice solution by the way!

Log in to reply

From where you found the question.

Log in to reply

Log in to reply

Log in to reply

Can you please prove that \(icot(ix) = coth(x)\)

Log in to reply

Easy, we know that :

\(cos(ix) = \frac{{e}^{x}+{e}^{-x}}{2}\)

Also \(sin(ix) = \frac{{e}^{x}-{e}^{x}}{2i}\)

Dividing then we get :

\(cot(ix) = (\frac{{e}^{x}+{e}^{-x}}{{e}^{x}-{e}^{-x}})i\)

Hence finally we have :

\(cot(ix)=icoth(x)\)

Log in to reply

If somebody wants to overkill it, Then

\[ S = \sum_{n=0}^{\infty} \frac{1}{1+n^2} \\ \\ = \frac{1}{2i} \sum_{n=0}^{\infty} \left( \frac{1}{n-i} - \frac{1}{n+i} \right) \] Now , using the unique property of digamma function that is it satisfies, \[ \psi(x+1)-\psi(x)=\frac{1}{x} \]

We get that , sum is equivalent to, \[ 1+ \frac{\psi(1+i) - \psi(1-i)}{2i} \] Now, again using reflection formula, this can be easily calculated and it equals,

\[ \frac{1}{2} + \frac{\pi}{2} \coth \pi = \frac{\pi+1}{2} + \frac{\pi}{e^{2\pi}-1}\]

Log in to reply

Are you 16 years old and know digamma function? Wow!

Log in to reply

@Calvin Lin @Jon Haussmann @Michael Mendrin @Steven Zheng @brian charlesworth @Pranav Arora @jatin yadav @Karthik Kannan @Ronak Agarwal Any ideas?

Log in to reply