Finding The Inverse Tangent Based On The Definition Of Tangent Derived From Euler's Formula

In the section https://brilliant.org/wiki/eulers-formula/#trigonometric-applications, tan(x) is defined as (e^(i * x) - e^(-i * x)) / i * (e^(i * x) + e^(-i * x)). I have been trying to find the inverse tan(x) from this definition, but have been unable to do so. I first wrote the problem as y = (e^(i * x) - e^(-i * x)) / i * (e^(i * x) + e^(-i * x)), y being the tan(x), and then substituted all of the x for y and y for x. I now had the problem x = (e^(i * y) - e^(-i * y)) / i * (e^(i * y) + e^(-i * y)). I multiplied both sides by i and got x * i = (e^(i * y) - e^(-i * y)) / (e^(i * y) + e^(-i * y)), and then, knowing that a^(-b) = 1 / a^(b), rewrote the problem as x * i = (e^(i * y) - (1 / e^(i * y))) / (e^(i * y) + (1 / e^(i * y))), and combined terms from there to get x * i = ((e^(2 * i * y) - 1) / (e^(i * y))) / ((e^(2* i * y) + 1) / (e^(i * y))). I then divided the numerator's fraction by the denominator's fraction to get x * i = (e^(2 * i * y) - 1) / (e^(2 * i * y) + 1). From here, I do not know how to proceed. My goal is to isolate the y. Any suggestions on how I might do this would be greatly appreciated.

Note by Michael Vonica
9 months, 3 weeks ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

Let y = e^(ix) first, then rearrange the equation to get a quadratic expression in terms of y.

Pi Han Goh - 9 months, 3 weeks ago

Log in to reply

Thanks Pi Han Goh. That lead me to my answer.

Michael Vonica - 9 months, 2 weeks ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...