So as you see in the above example, we basically make use of inequalities while solving problems related to Floor/Ceil Function. Here are some other inequalities that can help you -

\[x-1 < \lfloor x \rfloor \leq x\]

\[\lfloor x \rfloor \leq x < \lfloor x \rfloor +1\]

Also, notice that, any integer can be written as

\[x = \lfloor x \rfloor + \{x\}\]

Since, \(0 \leq \{x\} < 1\). That's where we get the inequality \(\lfloor x \rfloor \leq x < \lfloor x \rfloor +1\) and \(\lfloor x \rfloor \leq x\)

Anyhow, if your concern was regarding any of the well-known series such as Hermite's Identity, then please let me know so that I can add examples regarding the same.

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestHere's a simple example to gear you up. Prove that

\[\lim_{n \rightarrow \infty} \frac{1}{n^2}\sum_{k=1}^n \lfloor kx \rfloor = \frac{x}{2}\]

Proof.By the definition of Greatest Integer Function, \(x-1 < \lfloor x \rfloor \leq x\)Thus, we have \[kx-1 < \lfloor kx \rfloor \leq kx\] \[\Rightarrow \sum_{k=1}^n kx-1 < \sum_{k=1}^n \lfloor kx \rfloor \leq \sum_{k=1}^n kx\] \[\Rightarrow \frac{n(n+1)}{2}x-n < \sum_{k=1}^n \lfloor kx \rfloor \leq \frac{n(n+1)}{2}x\] \[\Rightarrow \frac{n+1}{2n}x-\frac{1}{n} < \frac{1}{n^2}\sum_{k=1}^n \lfloor kx \rfloor \leq \frac{n+1}{2n}x\]

Taking the limit, we find that \[\lim_{n \rightarrow \infty} \frac{n+1}{2n}x-\frac{1}{n} < \lim_{n \rightarrow \infty} \frac{1}{n^2}\sum_{k=1}^n \lfloor kx \rfloor \leq \lim_{n \rightarrow \infty} \frac{n+1}{2n}x\] \[\Rightarrow \frac{x}{2} < \lim_{n \rightarrow \infty} \frac{1}{n^2}\sum_{k=1}^n \lfloor kx \rfloor \leq \frac{x}{2}\]

And therefore by Squeeze Theorem our result follows as

\[\lim_{n \rightarrow \infty} \frac{1}{n^2}\sum_{k=1}^n \lfloor kx \rfloor = \frac{x}{2} \quad _\square\]

Also, you can read more about the floor function here

Log in to reply

So as you see in the above example, we basically make use of inequalities while solving problems related to Floor/Ceil Function. Here are some other inequalities that can help you -

\[x-1 < \lfloor x \rfloor \leq x\]

\[\lfloor x \rfloor \leq x < \lfloor x \rfloor +1\]

Also, notice that, any integer can be written as

\[x = \lfloor x \rfloor + \{x\}\]

Since, \(0 \leq \{x\} < 1\). That's where we get the inequality \(\lfloor x \rfloor \leq x < \lfloor x \rfloor +1\) and \(\lfloor x \rfloor \leq x\)

Anyhow, if your concern was regarding any of the well-known series such as Hermite's Identity, then please let me know so that I can add examples regarding the same.

Log in to reply