Waste less time on Facebook — follow Brilliant.
×

\(f(n) = k^n\) for some \(n\)?

To be specific, there have been questions on this topic:

n = 0 to 5 (inclusive)

n = 0 to 6 (inclusive)

This wiki contains spoliers about these questions, so you are recommended to do them first before reading the rest of this note.

In these questions: Actually, please do those questions first.

In these questions, \(k=2\) and \(n = 0\) to \(n=5\) and \(n=0\) to \(n=6\).

There's a lot of similarities, and even the answer is amazing, but I shall not spoil it.

Both questions are in the form "\(f(n)\) is a \(p\)-degree polynomial. When \(q = 0,1,2,\ldots,p\), \( f(q) = k^q\). What is \(f(x)\)?"

These questions are a special case of this form, with \(k = 2\) and x = 2*q+1. The answer is also very similar, f(x) = 2^(2*q).

I would like to know if this can be generalised for q and also, k, and if so, what values of x can create these values.

I'll work on it when I have time. Which doesn't come a lot.

Note by Aloysius Ng
1 year, 8 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

It can be done.

\({ 3 }^{ n }={ 2 }^{ 0 }\left( \begin{matrix} n \\ 0 \end{matrix} \right) +{ 2 }^{ 1 }\left( \begin{matrix} n \\ 1 \end{matrix} \right) +{ 2 }^{ 2 }\left( \begin{matrix} n \\ 2 \end{matrix} \right) +\cdots +{ 2 }^{ n-1 }\left( \begin{matrix} n \\ n-1 \end{matrix} \right) +2^{ n }\left( \begin{matrix} n \\ n \end{matrix} \right) \)

Joel Yip - 1 year, 7 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...