\( f(r) = f( r + \frac{1}{2} ) \)

Suppose that \( f: [0,1] \rightarrow [0,1] \) is a continuous function satisfying \( f(0) = f(1) \). Show that there is a real number \( r \) such that \( f(r) = f( r + \frac{1}{2} ) \).


This is a list of Calculus proof based problems that I like. Please avoid posting complete solutions, so that others can work on it.

Note by Calvin Lin
4 years, 3 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

On \([0,1]\) define \(g(x)=f(x) - f(x+1/2)\). Note that : \(g(0)=-g(1/2)\) since : \(f(0)=f(1)\).

This means that there is \(r\in [0,1/2]\) such that : \(f(r)=f(r+1/2)\).

Haroun Meghaichi - 4 years, 3 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...