×

# Fractional Part Integral Open Problem

Find a closed form of

$\int_{0}^{1} \ldots \int_{0}^{1} \left \{ \dfrac{x_{1}}{x_{2}} \right \} \left \{\dfrac{x_{2}}{x_{3}}\right \} \ldots \left \{\dfrac{x_{n-1}}{x_{n}}\right \} \left \{\dfrac{x_{n}}{x_{1}}\right \} \ \mathrm{d}x_{1} \ \mathrm{d}x_{2} \ldots \mathrm{d}x_{n} \quad ; \quad n \geq 3$

Notation : $$\{ \cdot \}$$ denotes fractional part function.

This is a part of the set Formidable Series and Integrals

Note by Ishan Singh
1 year, 10 months ago

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold
- bulleted- list
• bulleted
• list
1. numbered2. list
1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$...$$ or $...$ to ensure proper formatting.
2 \times 3 $$2 \times 3$$
2^{34} $$2^{34}$$
a_{i-1} $$a_{i-1}$$
\frac{2}{3} $$\frac{2}{3}$$
\sqrt{2} $$\sqrt{2}$$
\sum_{i=1}^3 $$\sum_{i=1}^3$$
\sin \theta $$\sin \theta$$
\boxed{123} $$\boxed{123}$$

Sort by:

Damn. Its looks so difficult :D it is easier to solve a rubic's cube in 1 min rather solving this problem :p

- 1 year, 10 months ago

i was making good progress,but i got stuck at

$$\displaystyle\int _{ 0 }^{ 1 }{ \left\lfloor \frac { { x }_{ 1 } }{ { x }_{ 2 } } \right\rfloor \left\lfloor \frac { { x }_{ 3 } }{ { x }_{ 1 } } \right\rfloor d{ x }_{ 1 } }$$

:(

- 1 year, 10 months ago

okay i will try

- 1 year, 10 months ago

Case $$n=2$$ is very simple.

- 1 year, 10 months ago

ya right :)

- 1 year, 10 months ago