Waste less time on Facebook — follow Brilliant.
×

Fractional parts, again!

\[ \large\displaystyle\int _{ 0 }^{ 1 }{ \displaystyle\int _{ 0 }^{ 1 }{ \left\{ \dfrac { x }{ y } \right\} ^{ k }\dfrac { { y }^{ a } }{ { x }^{ b } } \, dx \; dy } } =\dfrac { 1 }{ a-b+2 } \left( \dfrac { 1 }{ k-b+1 } +\dfrac { k! }{ (a+1)! } \sum _{ n=1 }^{ \infty }{ \frac { (a+n)! }{ (k+n)! } \left( \zeta (a+n+1)-1 \right) } \right) \]

Prove the equation above with \(k\) being a real number \(\ge1\) and \(a,b\) nonnegative integers such that \(a-b>-2\) and \(k-b>-1\).

Notations:


This is a part of the set Formidable Series and Integrals

Note by Hummus A
1 year, 7 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

rearranging the integral we get

\(\displaystyle\int _{ 0 }^{ 1 }{ \frac { 1 }{ { x }^{ b } } \displaystyle\int _{ 0 }^{ 1 }{ \left\{ \frac { x }{ y } \right\} ^{ k }{ y }^{ a }dxdy } } \)

then we let \(\frac { x }{ y } =u\) and the integral converts into

\(\displaystyle\int _{ 0 }^{ 1 }{ { x }^{ a+1-b } } \left( \displaystyle\int _{ x }^{ \infty }{ \frac { \{ u\} ^{ k } }{ { u }^{ a+2 } } du } \right) dx\)

now we integrate by parts to get

\(\displaystyle\int _{ 0 }^{ 1 }{ { x }^{ a+1-b } } \left( \displaystyle\int _{ x }^{ \infty }{ \frac { \{ u\} ^{ k } }{ { u }^{ a+2 } } du } \right) dx=\left( \frac { { x }^{ a+2-b } }{ a+2-b } \displaystyle\int _{ x }^{ \infty }{ \frac { \{ u\} ^{ k } }{ { u }^{ a+2 } } du } \right)\Big|_{x=0}^{x=1} +\frac { 1 }{ a+2-b } \displaystyle\int _{ 0 }^{ 1 }{ { x }^{ k-b }dx } =\\ \frac { 1 }{ a+2-b } \displaystyle\int _{ 1 }^{ \infty }{ \frac { \{ u\} ^{ k } }{ { u }^{ a+2 } } du } +\frac { 1 }{ (a+2-b)(k-b+1) } \)

i evaluated that integral here

putting that in we get

\(\boxed{\displaystyle\int _{ 0 }^{ 1 }{ ]\displaystyle\int _{ 0 }^{ 1 }{ \left\{ \frac { x }{ y } \right\} ^{ k }\frac { { y }^{ a } }{ x^{ b } } dxdy } } =\frac { 1 }{ a-b+2 } \left( \frac { 1 }{ k-b+1 } +\frac { k! }{ (a+1)! } \displaystyle\sum _{ n=1 }^{ \infty }{ \frac { (a+n)! }{ (k+n)! } \left( \zeta (a+n+1)-1 \right) } \right)}\)

Hummus A - 1 year, 7 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...